安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题含解析_第1页
安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题含解析_第2页
安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题含解析_第3页
安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题含解析_第4页
安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽宿州市泗县屏山镇中学2025届高一上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm2.函数在区间单调递减,在区间上有零点,则的取值范围是A. B.C. D.3.已知函数y=xa,y=xb,y=cx的图象如图所示,则A.c<b<a B.a<b<cC.c<a<b D.a<c<b4.已知平面向量,,且,则实数的值为()A. B.C. D.5.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.6.下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面内的三个顶点到平面的距离相等,则与平行C.,,则D.,,,则7.“角小于”是“角是第一象限角”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.若,则下列不等式成立的是()A. B.C. D.9.若,,,则,,的大小关系是()A. B.C. D.10.已知是的三个内角,设,若恒成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是______12.已知平面向量,,若,则______13.____________14.设函数,若函数在上的最大值为M,最小值为m,则______15.已知函数,其所有的零点依次记为,则_________.16.已知命题“∀x∈R,e x≥a”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润(万元)关于年产量(百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?18.已知函数f(x)=2cos.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及取得最大值时自变量x的取值集合;(3)求函数f(x)的单调增区间19.已知函数的图象在直线的下方且无限接近直线.(1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式;(2)判断函数的奇偶性并用定义证明;(3)求函数的值域.20.如图1,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图2,某摩天轮最高点距离地面高度为110m,转盘直径为100m,设置有48个座舱,开启时按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30.(1)求游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度;(2)以轴心为原点,与地面平行的直线为轴,所在的直线为轴建立直角坐标系,游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为m,求在转动一周的过程中,关于的函数解析式;(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m)关于的函数解析式,并求高度差的最大值(结果精确到0.1m).参考公式:.参考数据:,21.已知函数(,且).(1)写出函数的定义域,判断奇偶性,并证明;(2)解不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用扇形弧长公式进行求解.【详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C2、C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.3、A【解析】由指数函数、幂函数的图象和性质,结合图象可得a>1,b=12,【详解】由图象可知:a>1,y=xb的图象经过点4,2当x=1时,y=c∴c<b<a,故选:A【点睛】本题考查了函数图象的识别,关键掌握指数函数,对数函数和幂函数的图象和性质,属于基础题.4、C【解析】根据垂直向量坐标所满足的条件计算即可【详解】因为平面向量,,且,所以,解得故选:C5、A【解析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.6、D【解析】根据线面关系,逐一判断每个选项即可.【详解】解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图,,,,分别为正方体中所在棱的中点,平面设为平面,易知正方体的三个顶点,,到平面的距离相等,但所在平面与相交,故错误;对于选项C,可能在平面内,故错误;对于选项D,正确.故选:D.7、D【解析】利用特殊值法结合充分、必要条件的定义判断可得出结论.【详解】若角小于,取,此时,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此时,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要条件.故选:D.8、D【解析】根据不等式的性质逐项判断可得答案.【详解】对于A,因为,,故,故A错误对于B,因为,,故,故,故B错误对于C,取,易得,故C错误对于D,因为,所以,故D正确故选:D9、A【解析】根据指数函数、对数函数的单调性,结合题意,即可得x,y,z的大小关系,即可得答案.【详解】因为在上为单调递增函数,且,所以,即,因为在R上为单调递增函数,且,所以,即,又,所以.故选:A10、D【解析】先化简,因为恒成立,所以恒成立,即恒成立,所以,故选D.考点:三角函数二倍角公式、降次公式;二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先利用指数函数的单调性得,再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题12、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.13、【解析】,故答案为.考点:对数的运算.14、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.15、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.16、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)100百件【解析】(1)根据收益总收入成本,进行分情况讨论,构建出分段函数;(2)对分段函数每一段进行研究最大值,然后再求出整个函数的最大值.【详解】解:(1)当时,;当时,;;(2)当时,,当时,;当时,,当且仅当,即时,.年产量为100百件时,该企业获得利润最大,最大利润为1800万元.【点睛】本题考查了数学建模问题、分段函数最值问题,数学建模要能准确地从题意中抽象出函数模型,分段函数是一个函数,分段不分家,一般需要分情况讨论。18、(1)(2)当时,取得最大值为.(3)【解析】(1)根据三角函数最小正周期公式求得正确答案.(2)根据三角函数最大值的求法求得正确答案.(3)利用整体代入法求得的单调递增区间.【小问1详解】的最小正周期为.【小问2详解】当时,取得最大值为.【小问3详解】由,解得,所以的单调递增区间为.19、(1)函数在上单调递增,(2)奇函数,证明见解析(3)【解析】(1)根据函数的单调性情况直接判断;(2)根据奇偶性的定义直接判断;(3)由奇偶性直接判断值域.【小问1详解】因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增.由的图象在直线下方,且无限接近直线,得,所以函数的解析式.【小问2详解】由(1)得,整理得,函数定义域关于原点对称,,所以函数是奇函数.小问3详解】方法一:由(1)知,由(2)知,函数图象关于原点中心对称,故,所以函数的值域为.方法二:由,得,得,得,得,得,所以函数的值域为.20、(1)m;(2);(3),;m【解析】(1)设时,游客甲位于,得到以为始边的角,即初相,再利用周期性和最值得到函数的解析式,令求解即可.(2)由(1)的求解过程即可得出答案.(3)甲、乙两人的位置分别用点、表示,则,分别求出后甲和乙距离地面的高度,从而求出高度差,再利用已知条件给出的参考公式进行化简变形,利用三角函数的有界性进行分析求解即可.【详解】(1)设时,游客甲位于,得到以为始边的角为,根据摩天轮转一周需要30,可知座舱转动的速度约为,由题意可得,,(),当时,,所以游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度为米.(2)由(1)可得,,;(3)如图,甲、乙两人的位置分别用点、表示,则,经过后,甲距离地面的高度为,点相对于始终落后,此时乙距离地面的高度,则甲、乙高度差为,利用,可得,,当或,即或,所以的最大值为米,所以甲、乙两人距离地面的高度差的最大值约为米.21、(1),为奇函数;(2)当时,解得:当时,【解析】【试题分析】(1)根据求得函数的定义域,利用判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论