查补重难点02 方程、不等式(组)与函数的实际应用(解析版)_第1页
查补重难点02 方程、不等式(组)与函数的实际应用(解析版)_第2页
查补重难点02 方程、不等式(组)与函数的实际应用(解析版)_第3页
查补重难点02 方程、不等式(组)与函数的实际应用(解析版)_第4页
查补重难点02 方程、不等式(组)与函数的实际应用(解析版)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

查补重难点02方程、不等式(组)与函数的实际应用考点一:方程(组)、不等式(组)的实际应用方程(组)的应用题以实际问题为背景,一般为生活中常见的分析决策问题,且情境真实、贴近学生生活。程(组)的应用题考查数学抽象和数学建模以及阅读能力,让学生学会把实际问题转化成数学问题,用数学符号建立方程(组)、不等式等表示数学问题中的数量关系,并设计出适当的解决问题的方案,培养应用意识和模型思想,提高解决实际问题能力。题型1.一次方程(组)的实际应用列一次方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)。例1.(2023·江苏连云港·中考真题)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行里,慢马每天行里,驽马先行天,快马几天可追上慢马?若设快马天可追上慢马,由题意得(

)A.B.C.D.【答案】D【分析】设快马天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马天可追上慢马,由题意得故选:D.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.变式1.(2022·江苏徐州·中考真题)《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.【答案】(1)(2)兽有8只,鸟有7只.【分析】(1)根据“兽与鸟共有76个头与46只脚”,即可得出关于x、y的二元一次方程组;(2)解方程组,即可得出结论.【详解】(1)解:∵兽与鸟共有76个头,∴6x+4y=76;∵兽与鸟共有46只脚,∴4x+2y=46.∴可列方程组为.故答案为:;(2)解:原方程组可化简为,由②可得y=23-2x③,将③代入①得3x+2(23-2x)=38,解得x=8,∴y=23-2x=23-2×8=7.答:兽有8只,鸟有7只.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.变式2.(2023·北京·中考真题)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为,宽为.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)

【答案】边的宽为,天头长为【分析】设天头长为,则地头长为,边的宽为,再分别表示础装裱后的长和宽,根据装裱后的长是装裱后的宽的4倍列方程求解即可.【详解】解:设天头长为,由题意天头长与地头长的比是,可知地头长为,边的宽为,装裱后的长为,装裱后的宽为,由题意可得:解得,∴,答:边的宽为,天头长为.【点睛】本题考查了一元一次方程的应用,题中的数量关系较为复杂,需要合理设未知数,找准数量关系.例2.(2023·江苏盐城·中考真题)我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为.【答案】7人【分析】设共有x人,价格为y钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x人,价格为y钱,依题意得:,解得:,答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.变式1.(2024·江苏无锡·一模)《九章算术》中有一题:“今有大器五、小器一,容三斛;大器一、小器五,容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?若大容器的容量为斛,小容器的容量为斛,则可列方程组(

)A. B. C. D.【答案】B【分析】本题考查列二元一次方程组,理解题意,根据题中等量关系列出方程组即可.【详解】解:根据题意,得,故选:B.变式2.(2022·江苏南京·中考真题)某文印店用2660元购进一批白色复印纸和彩色复印纸,白色复印纸每箱80元,彩色复印纸每箱180元,购买白色复印纸得箱数是彩色复印纸得箱数得5倍少3箱,求购买的白色复印纸得箱数和彩色复印纸得箱数.【答案】购买的白色复印纸22箱,彩色复印纸5箱【分析】设购买的白色复印纸箱,彩色复印纸箱,根据总价是2660元、购买白色复印纸得箱数是彩色复印纸得箱数得5倍少3箱,列二元一次方程组,即可求解.【详解】解:设购买的白色复印纸箱,彩色复印纸箱.由题意得:解得:答:购买的白色复印纸22箱,彩色复印纸5箱.【点睛】本题考查二元一次方程组的实际应用,解题的关键是根据所给数量关系正确列出方程组.题型2.分式方程的实际应用1.列分式方程解应用题的一般步骤:①审题(找等量关系);②设未知数;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答。2.分式方程的应用题题型主要涉及工程问题、行程问题、利润问题等,每个问题中涉及到三个量的关系。如:工作时间=,时间=,总利润=单件利润×销售量,利润率=利润÷成本×100%等。例1.(2023·江苏徐州·中考真题)随着2022年底城东快速路的全线通车,徐州主城区与东区之间的交通得以有效改善,如图某人乘车从徐州东站至戏马台景区,可沿甲路线或乙路线前往.已知甲、乙两条路线的长度均为,甲路线的平均速度为乙路线的倍,甲路线的行驶时间比乙路线少,求甲路线的行驶时间.

【答案】甲路线的行驶时间为.【分析】设甲路线的行驶时间为,则乙路线的行驶事件为,根据“甲路线的平均速度为乙路线的倍”列分式方程求解即可.【详解】解:甲路线的行驶时间为,则乙路线的行驶事件为,由题意可得,,解得,经检验是原方程的解,∴甲路线的行驶时间为,答:甲路线的行驶时间为.【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出等量关系列出相应的分式方程.变式1.(2023·江苏·模拟预测)某班将举行一次知识竞赛活动,班长安排小红购买奖品,下面是小红买回奖品时与班长的对话.小红:我买了甲、乙两种笔记本共本,甲种笔记本的单价比乙种笔记本的少元,我给了老板元,老板给我找回元,其中买甲种笔记本花了元.班长:你肯定说错了!小红:我把自己口袋里的元一起当做找回的钱了.班长:这就对了!请你根据对话信息,计算乙种笔记本买了(

)A.本 B.本 C.本 D.本【答案】C【分析】本题考查了分式方程的应用,设甲种笔记本的单价为元,则乙种笔记本的单价为元,根据题意列出方程,求解检验即可,解题的关键读懂题意列出分式方程.【详解】设甲种笔记本的单价为元,则乙种笔记本的单价为元,由题意得:,整理得:,解得:,经检验:是分式方程的解,则甲种笔记本买了本,∴乙种笔记本买了本,故选:.变式2.(2022·江苏扬州·中考真题)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.题型3.一元二次方程的实际应用1.利用一元二次方程解决实际问题:列一元二次方程解应用题步骤,即审、设、列、解、验、答六步.2.增长率等量关系:设为原来量,为平均增长率,为增长次数,为增长后的量,则;当为平均下降率时,则有.3.利润等量关系:1)利润=售价-成本;2)利润率=×100%;3)总利润=单位利润×数量4.面积问题:常用平移法解决面积问题5.碰面问题(循环问题):(1)双循环:n支球队互相之间都要打一场比赛,总共比赛场次为m;则m=n(n-1)。(2)单循环:n支球队,每支球队要在主场与所有球队各打一场,总共比赛场次m。则m=n(n-1)。例1.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园(如图),生态园一面靠墙(墙足够长),另外三面用的篱笆围成.生态园的面积能否为?如果能,请求出的长;如果不能,请说明理由.

【答案】的长为米或米【分析】设米,则米,根据矩形生态园面积为,建立方程,解方程,即可求解.【详解】解:设米,则米,根据题意得,,解得:,答:的长为米或米.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.变式1.(2023·江苏无锡·中考真题)2020年一2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的年平均增长率为x,下列方程正确的是(

)A.B.C.D.【答案】A【分析】根据2020年的人均可支配收入和2022年的人均可支配收入,列出一元二次方程即可.【详解】解:由题意得:.故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.变式2.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了人,则可得到方程(

)A. B. C. D.【答案】C【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每一轮传染中平均每人传染了人,则第一轮传染了个人,第二轮作为传染源的是人,则传染人,依题意列方程:.【详解】由题意得:,故选:C.【点睛】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.变式3.(2023·江苏无锡·中考真题)《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是尺.【答案】8【分析】设门高尺,则竿长为尺,门的对角线长为尺,门宽为尺,根据勾股定理即可求解.【详解】解:设门高尺,依题意,竿长为尺,门的对角线长为尺,门宽为尺,∴,解得:或(舍去),故答案为:.【点睛】本题考查了勾股定理,根据题意建立方程是解题的关键.变式4.(2022·湖北宜昌·中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加.5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元.求的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为吨,则4月份的再生纸产量为吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为,5月份再生纸的产量为吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为吨,则4月份的再生纸产量为吨,由题意得:,解得:,∴,答:4月份再生纸的产量为500吨;(2)解:由题意得:,解得:或(不合题意,舍去)∴,∴的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为,5月份再生纸的产量为吨,∴答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.题型4.不等式(组)的实际应用列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.注意:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等。列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.例1.(2024·江苏常州·一模)某商场在世博会上购置甲、乙两种礼盒,其中甲礼盒的单价比乙礼盒的单价贵25元,且购置2个甲礼盒与1个乙礼盒共花费200元.(1)求甲、乙两种礼盒的单价;(2)若该商场要求购置甲礼盒的数量是乙礼盒数量的2倍,且购置礼盒的总额不高于20000元,则该商场最多可以购置多少个乙礼盒?【答案】(1)甲种礼盒的单价为75元,乙种礼盒的单价为50元(2)该商场最多可以购置100个乙礼盒【分析】本题考查一元一次方程与一元一次不等式解决实际问题.(1)设甲礼盒的单价为x元,则乙礼盒的单价为元.根据“购置2个甲礼盒与1个乙礼盒共花费200元”列出方程,求解即可解答;(2)设该商场购置n个乙礼盒,则购置个甲礼盒.根据“购置礼盒的总额不高于20000元”列出不等式,求解即可解答.【详解】(1)解:设甲礼盒的单价为x元,则乙礼盒的单价为元.根据题意,得,解得:,∴,答:甲礼盒的单价为75元,乙礼盒的单价为50元.(2)设该商场购置n个乙礼盒.则购置个甲礼盒,根据题意,得,解得:,答:该商场最多可以购置100个乙礼盒.变式1.(2023·湖南·中考真题)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共个班级参加.(1)比赛积分规定:每场比赛都要分出胜负,胜一场积分,负一场积分.某班级在场比赛中获得总积分为分,问该班级胜负场数分别是多少?(2)投篮得分规则:在分线外投篮,投中一球可得分,在分线内含分线投篮,投中一球可得分,某班级在其中一场比赛中,共投中个球只有分球和分球,所得总分不少于分,问该班级这场比赛中至少投中了多少个分球?【答案】(1)该班级胜负场数分别是场和场;(2)该班级这场比赛中至少投中了个分球.【分析】(1)设胜了场,负了场,根据场比赛中获得总积分为分可列方程组,求解即可.(2)设班级这场比赛中投中了个分球,则投中了个分球,根据所得总分不少于分,列出相应的不等式,从而可以求出答案.【详解】(1)解:设胜了场,负了场,根据题意得:,解得,答:该班级胜负场数分别是场和场;(2)设班级这场比赛中投中了个分球,则投中了个分球,根据题意得:,解得,答:该班级这场比赛中至少投中了个分球.【点睛】本题考查二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程组和不等式.变式2.(2023·河南·中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.考点二:函数相关的实际应用函数相关的实际应用问题在中考中的考查常以解答题为主,通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优,主要考查解一元一次方程、二元一次方程(组)、不等式(组)、分式方程、一元二次方程,一次函数、二次函数求最值。设题背景有:工程问题、利润问题、平均变化率问题、方案选择问题等.由于此类专题应用范围较广,因此是中考的常考题。题型1.一次函数的实际应用1)一次函数的应用问题的求解思路:①建立一次函数模型→求出一次函数解析式→结合函数解析式、函数性质作出解答;②利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题以及经济决策、市场经济等方面的应用。2)建立函数模型解决实际问题的一般步骤:①审题,设定实际问题中的变量,明确变量x和y;②根据等量关系,建立变量与变量之间的函数关系式,如:一次函数的函数关系式;③确定自变量x的取值范围,保证自变量具有实际意义;④利用函数的性质解决问题;⑤写出答案。3)利用一次函数的图象解决实际问题的一般步骤:①观察图象,获取有效信息;②对获取的信息进行加工、处理,理清各数量之间的关系;③选择适当的数学工具(如函数、方程、不等式等),通过建模解决问题。【注意】时刻注意根据实际情况确定变量的取值范围。例1.(2023·江苏·中考真题)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为.两车之间的距离与慢车行驶的时间的函数图像如图所示.

(1)请解释图中点的实际意义;(2)求出图中线段所表示的函数表达式;(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.【答案】(1)快车到达乙地时,慢车距离乙地还有(2)(3)小时【分析】(1)根据点的纵坐标最大,可得两车相距最远,结合题意,即可求解;(2)根据题意得出,进而待定系数法求解析式,即可求解;(3)先求得快车的速度进而得出总路程,再求得快车返回的速度,即可求解.【详解】(1)解:根据函数图象,可得点的实际意义为:快车到达乙地时,慢车距离乙地还有(2)解:依题意,快车到达乙地卸装货物用时,则点的横坐标为,此时慢车继续行驶小时,则快车与慢车的距离为,∴设直线的表达式为∴解得:∴直线的表达式为(3)解:设快车去乙地的速度为千米/小时,则,解得:∴甲乙两地的距离为千米,设快车返回的速度为千米/小时,根据题意,解得:,∴两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需(小时)【点睛】本题考查了一次函数的应用,一元一次方程,根据函数图象获取信息是解题的关键.变式1.(2023·江苏连云港·中考真题)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:阶梯年用气量销售价格备注第一阶梯(含400)的部分2.67元若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.第二阶梯(含1200)的部分3.15元第三阶梯以上的部分3.63元(1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)【答案】(1)534(2)(3)26立方米【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y与x之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【详解】(1)∵,∴该年此户需缴纳燃气费用为:(元),故答案为:534;(2)关于的表达式为(3)∵,∴甲户该年的用气量达到了第三阶梯.由(2)知,当时,,解得.又∵,且,∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为.则有,解得,∴.答:该年乙户比甲户多用约26立方米的燃气.【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程.变式2.(2022·江苏宿迁·中考真题)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240(2)当时,选择乙超市更优惠,当时,两家超市的优惠一样,当时,选择甲超市更优惠.【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x件这种文化用品,所花费用为y元,可得当时,显然此时选择乙超市更优惠,当时再分三种情况讨论即可.【详解】(1)解:甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),故答案为:(2)设单位购买x件这种文化用品,所花费用为y元,又当10x=400时,可得当时,显然此时选择乙超市更优惠,当时,当时,则解得:∴当时,两家超市的优惠一样,当时,则解得:∴当时,选择乙超市更优惠,当时,则解得:∴当时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.题型2.反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围。例1.(2023·江苏苏州·九年级校考期中)为了响应“绿水青山就是金山银山”的号召,建设生态文明,德州市某工厂自年月开始限产并进行治污改造,其月利润万元与月份之间的变化如图所示,治污完成前是反比例函数图像的一部分,治污完成后是一次函数图像的部分,下列选项错误的是(

)A.月份的利润为万元B.治污改造完成后每月利润比前一个月增加万元C.月份该厂利润达到万元D.治污改造完成前后共有个月的利润低于万元【答案】D【分析】利用已知点求出一次函数与反比例函数的解析式,然后逐项分析即可解答.【详解】解:A、设反比例函数的解析式为,把代入得,,反比例函数的解析式:,∵当时,,月份的利润为万元,正确,不合题意;B、治污改造完成后,从月到月,利润从万到万,故每月利润比前一个月增加万元,正确,不合题意;C、设一次函数解析式为:,则,解得:,故一次函数解析式为:,当时,,解得:,∴治污改造完成后的第个月,即月份该厂利润达到万元,正确,不合题意.D、当时,,解得:,∴只有月,月,月共个月的利润低于万元,不正确,符合题意.故选:D.【点睛】本题主要考查了一次函数与反比函数的应用,正确求出函数解析是解题关键.变式1.(2023·河北保定·统考一模)某种玻璃原材料需在环境保存,取出后匀速加热至高温,之后停止加热,玻璃制品温度会逐渐降低至室温(),加热和降温过程中可以对玻璃进行加工,且玻璃加工的温度要求不低于.玻璃温度与时间的函数图象如下,降温阶段y与x成反比例函数关系,根据图象信息,以下判断正确的是(

)A.玻璃加热速度为 B.玻璃温度下降时,y与x的函数关系式为C.能够对玻璃进行加工时长为 D.玻璃从降至室温需要的时间为【答案】C【分析】根据图象中的数据逐项分析求解即可.【详解】解:∵,∴玻璃加热速度为,故A选项不合题意;由题可得,在反比例函数图象上,设反比例函数解析式为,代入点可得,,∴玻璃温度下降时,y与x的函数关系式是,故B选项不合题意;∴设玻璃温度上升时的函数表达式为,由题可得,在正比例函数图象上,代入点可得,,∴玻璃温度上升时,y与x的函数关系式是,∴将代入,得,∴将代入,得,∴,∴能够对玻璃进行加工时长为,故C选项符合题意;将代入得,,∴,∴玻璃从降至室温需要的时间为,故D选项不符合题意.故选:C.【点睛】本题考查了反比例函数和一次函数的应用,读懂函数图像,获取信息是解决本题的关键.变式2.(2023·河南信阳·校考三模)湿度是指空气的干湿程度,或含有的水蒸气的多少,天气预报中最常用的是相对湿度,相对湿度是空气中实际水蒸气含量与同温度下的最大可容纳水蒸气含量的百分比值,符号为%RH.人体感觉舒适的湿度一般为40%RH~70%RH.如图1所示为某实验室的自动除湿机简化后的电路图,R为装在除湿机内的湿敏电阻,其阻值随相对湿度变化的图象如图2所示,当湿敏电阻R的阻值发生变化时,控制电路中线圈的电流I随之发生变化,控制电路中总电阻(调控电阻和湿敏电阻R的阻值之和,其他忽略不计)与电流I的关系图象如图3所示,当电流大于或等于20mA时,L的两个磁性弹片相互吸合,工作电路的压缩机开始带动系统进行除湿.下列说法不正确的是(

A.相对湿度越高,湿敏电阻R的阻值越小B.当相对湿度为35%RH时,湿敏电阻R的阻值为150ΩC.当湿敏电阻R的阻值为50Ω时,实验室内的相对湿度在人体感觉舒适的湿度范围内D.当相对湿度为45%RH时,若要压缩机开始工作,则调控电阻的阻值不能低于500Ω【答案】D【分析】根据所给条件和函数图象,逐条分析判断即可.【详解】由题图2,可知湿敏电阻R的阻值随相对湿度的增大而减小,且当时,,故选项A,B说法正确,不符合题意.当时,,在40%RH~70%RH范围内,故选项C说法正确,不符合题意.当时,湿敏电阻.若要压缩机开始工作,则电流,.∴调控电阻,故选项D说法错误,符合题意.故选D【点睛】本题考查函数及其图象的意义,正确读取图象信息是解题关键.还要明白在电压一定时,电阻越大电流越小.题型3.二次函数的实际应用用二次函数解决实际问题的一般步骤:1)审:仔细审题,理清题意;2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的未知数;3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的解析式;4)解:依据已知条件,借助二次函数的解析式、图象和性质等求解实际问题;5)检:检验结果,进行合理取舍,得出符合实际意义的结论。例1.(2024·江苏无锡·一模)阳春三月,又到了一年最美樱花季,鼋头渚某商家借机推出新款樱花雪糕,其中雪糕每支成本5元.该商家每支雪糕定价元,平均每天可售出支,为了扩大销售,增加盈利,尽快减少库存,商家决定采取适当的降价措施,经调查发现,如果每支雪糕降价元,商场平均每天可多售出支.求:(1)若商家平均每天要盈利22500元,每支雪糕应降价多少元?(2)每支雪糕降价多少元时,商家平均每天盈利最多?【答案】(1)10元(2)当时,售出所获利润最大,最大利润为22687.5元【分析】本题考查了二次函数的应用以及一元二次方程的应用,根据数量关系列出关于的一元二次方程(二次函数关系式)是解题的关键.(1)设每支雪糕应降价元,根据“商家盈利单支盈利销售数量”,即可列出关于的一元二次方程,解方程即可得出的值,再结合减少库存即可确定的值;(2)设每支雪糕降价元时,商家所获得的利润为元,根据“商场盈利单件盈利销售数量”,即可找出关于的二次函数关系式,配方后根据二次函数的性质即可得出每支雪糕降价多少元时盈利最大.【详解】(1)解:设每支雪糕应降价x元,得:,解得:(舍),∵为了尽快减少库存,∴每支雪糕应降价10元;(2)解:设每支雪糕降价元时,商家所获得的利润为元,根据题意,得,∵,∴元时,利润最大为:22687.5元;答:当时,售出所获利润最大,最大利润为22687.5元.变式1.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.【答案】(1)48000,37;(2)33150元;(3)【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围.【详解】解:(1)=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:,解得:x=37或x=-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=,y乙=,当甲公司的利润大于乙公司时,0<x<37,y=y甲-y乙==,当x==18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37<x≤50,y=y乙-y甲==,∵对称轴为直线x==18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为=,对称轴为直线x=,∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,∴,解得:.【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式.变式2.(2023·湖南益阳·中考真题)某企业准备对A,B两个生产性项目进行投资,根据其生产成本、销售情况等因素进行分析得知:投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,投资B项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:.(1)若将10万元资金投入A项目,一年后获得的收益是多少?(2)若对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,则m的值是多少?(3)2023年,我国对小微企业施行所得税优惠政策.该企业将根据此政策获得的减免税款及其他结余资金共计32万元,全部投入到A,B两个项目中,当A,B两个项目分别投入多少万元时,一年后获得的收益之和最大?最大值是多少万元?【答案】(1)4万元(2)(3)当A,B两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元.【分析】(1)把代入可得答案;(2)当时,可得,再解方程可得答案;(3)设投入到B项目的资金为万元,则投入到A项目的资金为万元,设总收益为y万元,,而,再利用二次函数的性质可得答案.【详解】(1)解:∵投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,当时,(万元);(2)∵对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,∴,整理得:,解得:,(不符合题意),∴m的值为8.(3)设投入到B项目的资金为万元,则投入到A项目的资金为万元,设总收益为y万元,∴,而,∴当时,(万元);∴当A,B两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元.【点睛】本题考查的是正比例函数的性质,一元二次方程的解法,列二次函数的解析式,二次函数的性质,理解题意,选择合适的方法解题是关键.题型4.方程、不等式、函数综合的实际应用建立方程、不等式、函数模型解决问题的一般步骤:①阅读,弄清问题背景和基本要求;②分析,寻找问题的数量关系,找到与其相关的知识;③建模,由分析得出的相关知识建立方程模型、不等式(组)模型或函数模型;④解题,求解上述建立的方程、不等式或函数,结合实际确定最优方案。例1.(2023·江苏扬州·中考真题)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元,54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【分析】(1)设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【详解】(1)解:设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,∵,则w随m的增大而增大,∴时,w取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.变式1.(2022·江苏苏州·中考真题)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m的最大值为22【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利润w与x的关系式,根据一次函数的性质判断即可.【详解】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.根据题意,得解方程组,得答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.(2)设水果店第三次购进x千克甲种水果,则购进千克乙种水果,根据题意,得.解这个不等式,得.设获得的利润为w元,根据题意,得.∵,∴w随x的增大而减小.∴当时,w的最大值为.根据题意,得.解这个不等式,得.∴正整数m的最大值为22.【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.变式2.(2023·江苏宿迁·中考真题)某商场销售两种商品,每件进价均为20元.调查发现,如果售出种20件,种10件,销售总额为840元;如果售出种10件,种15件,销售总额为660元.(1)求两种商品的销售单价.(2)经市场调研,种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;种商品的售价不变,种商品售价不低于种商品售价.设种商品降价元,如果两种商品销售量相同,求取何值时,商场销售两种商品可获得总利润最大?最大利润是多少?【答案】(1)的销售单价为元、的销售单价为元(2)当时,商场销售两种商品可获得总利润最大,最大利润是元.【分析】(1)设的销售单价为元、的销售单价为元,根据题中售出种20件,种10件,销售总额为840元;售出种10件,种15件,销售总额为660元列方程组求解即可得到答案;(2)设利润为,根据题意,得到,结合二次函数性质及题中限制条件分析求解即可得到答案.【详解】(1)解:设的销售单价为元、的销售单价为元,则,解得,答:的销售单价为元、的销售单价为元;(2)解:种商品售价不低于种商品售价,,解得,即,设利润为,则,,在时能取到最大值,最大值为,当时,商场销售两种商品可获得总利润最大,最大利润是元.【点睛】本题考查二元一次方程组及二次函数解实际应用题,读懂题意,根据等量关系列出方程组,根据函数关系找到函数关系式分析是解决问题的关键.专项训练1.(2023·江苏镇江·中考真题)小明从家出发到商场购物后返回,如图表示的是小明离家的路程(单位:)与时间(单位:)之间的函数关系.已知小明购物用时,从商场返回家的速度是从家去商场速度的倍,则的值为(

A.46 B.48 C.50 D.52【答案】D【分析】设小明从家去商场的速度为,则他从商场返回家的速度为,根据“从家去商场和从商场返回家路程不变”列方程求解即可.【详解】解:设小明从家去商场的速度为,则他从商场返回家的速度为,根据题意得:,解得:,故选:D.【点睛】本题考查了一次函数的图像、一元一次方程的实际应用,根据函数图象正确列出一元一次方程式解题关键.2.(2023·湖南·中考真题)某校组织九年级学生赴韶山开展研学活动,已知学校离韶山50千米,师生乘大巴车前往,某老师因有事情,推迟了10分钟出发,自驾小车以大巴车速度的倍前往,结果同时到达.设大巴车的平均速度为x千米/时,则可列方程为(

)A. B. C. D.【答案】A【分析】设大巴车的平均速度为x千米/时,则老师自驾小车的平均速度为千米/时,根据时间的等量关系列出方程即可.【详解】解:设大巴车的平均速度为x千米/时,则老师自驾小车的平均速度为千米/时,根据题意列方程为:,故答案为:A.【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.3.(2023·江苏宿迁·中考真题)《孙子算经》中有个问题:若三人共车,余两车空:若两人共车,剩九人步,问人与车各几何?设有x辆车,则根据题意可列出方程为(

)A. B. C. D.【答案】D【分析】根据每三人乘一车,最终剩余2辆车,每2人乘一车,最终剩余9人无车可乘,进而表示出总人数得出等式即可;【详解】由题意可列出方程,故选D.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.4.(2022·江苏宿迁·中考真题)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是(

)A. B. C. D.【答案】B【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x间,房客y人;根据题意得:,故选:B.【点睛】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.5.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x步,根据题意列方程正确的是(

)A.B.C.D.【答案】D【分析】设宽为x步,则长为步,根据题意列方程即可.【详解】解:设宽为x步,则长为步,由题意得:,故选:D.【点睛】本题考查一元二次方程的实际应用,正确理解题意是关键.6.(2023·山东青岛·统考二模)为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例,药物燃烧完后,y与x成反比例(如图).现测得药物燃毕,此时室内空气中每立方米的含药量为.研究表明,当空气中每立方米的含药量不低于才有效,那么此次消毒的有效时间是分钟.

【答案】12【分析】首先根据题意确定一次函数与反比例函数的解析式,然后代入确定两个自变量的值,差即为有效时间.【详解】解:药物燃烧时y关于x的函数关系式为把代入中得;,∴,∴药物燃烧时y关于x的函数关系式为设药物燃烧后y关于x的函数关系式为把代入中得;,∴,∴药物燃烧后y关于x的函数关系式为把代入,得:,把代入,得:,∵,∴那么此次消毒的有效时间是12分钟,故答案为:12.【点睛】本题考查了反比例函数与正比例函数的实际应用,熟练掌握待定系数法是解题关键.7.(2024·江苏徐州·模拟预测)小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是、,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前出发,求小明和小刚两人的速度.设小明的速度是,根据题意可列方程为.【答案】;【分析】本题考查分式方程的应用,根据时间方程列式即可得到答案;【详解】解:由题意可得,小刚骑自行车的速度是:,∵若二人同时到达,则小明需提前出发,∴,故答案为:.8.(2024·江苏南京·一模)某产品原来成本是25元,按照固定的百分率降低成本,连续两次降低后比一次降低后所剩的成本少4元,可得方程.【答案】【分析】本题主要考查了一元二次方程的应用,解题的关键是设降低的百分率为x,再表示出连续两次降低后的成本,一次降低后的成本,根据连续两次降低后比一次降低后所剩的成本少4元,列出方程即可.【详解】解:设降低的百分率为x,根据题意得:.故答案为:.9.(2023·湖南娄底·中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这个同学之间的距离与原来n个同学之间的距离相等.

【答案】【分析】由第一次操作可得:,则,设第二次操作时每位同学向后移动了x米,可得,解得,再代入化简即可.【详解】解:由第一次操作可得:,∴,设第二次操作时每位同学向后移动了x米,则,∴,故答案为:【点睛】本题考查的是一元一次方程的应用,分式的化简,准确的理解题意确定相等关系是解本题的关键.10.(2023·山东·中考真题)《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四、问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组:.【答案】【分析】设有人,物品价值为元,根据等量关系“每人出8元,多3元”和“每人出7元,少4元”列出二元一次方程组即可解答.【详解】解:设有人,物品价值为元,由题意得:.故答案为:.【点睛】本题主要考查列二元一次方程组.根据题意、正确找到等量关系是解题的关键.11.(2022·江苏连云港·中考真题)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【答案】有7人,物品价格是53钱【分析】设人数为人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为人,由题意得,解得.所以物品价格是.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.12.(2023·江苏扬州·中考真题)甲、乙两名学生到离校的“人民公园”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的4倍,甲出发后乙同学出发,两名同学同时到达,求乙同学骑自行车的速度.【答案】【分析】根据甲、乙同学步行和骑自行车的速度之间的数量关系设未知数,再根据所走时间之间的数量关系列方程即可.【详解】解:设甲同学步行的速度为,则乙同学骑自行车速度为,

,由题意得,,解得,经检验,是分式方程的解,也符合实际.,答:乙同学骑自行车的速度为.【点睛】本题考查了分式方程的实际应用,解决问题时需注意时间单位的统一,同时解分式方程需检验.13.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为.若纸张大小为,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的,则需如何设置页边距?

【答案】【分析】设页边距为,根据题意找出等量关系列方程,解方程即可解题.【详解】解:设页边距为则列方程为:,解得:,(舍去),答:页边距为.【点睛】本题考查一元二次方程的应用,找准等量关系列方程式解题的关键.14.(2023·湖南湘西·中考真题)2023年“地摊经济”成为社会关注的热门话题,“地摊经济”有着启动资金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A种品牌小电器和1台B种品牌小电器,共需要65元销售一台A种品牌小电器获利3元,销售一台B种品牌小电器获利4元.(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?【答案】(1)、型品牌小电器每台进价分别为15元、20元(2)(3)型30台,型120台,最大利润是570元.【分析】(1)列方程组即可求出两种风扇的进价,(2)列一元一次不等式组求出取值范围即可,(3)再求出利润和自变量之间的函数关系式,根据函数的增减性确定当自变量为何值时,利润最大,由关系式求出最大利润.【详解】(1)设、型品牌小电器每台的进价分别为元、元,根据题意得:,解得:,答:、型品牌小电器每台进价分别为15元、20元.(2)设购进型品牌小电器台由题意得:,解得,答:购进A种品牌小电器数量的取值范围.(3)设获利为元,由题意得:,∵所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元∴解得:∴随的增大而减小,当台时获利最大,最大元,答:型30台,型120台,最大利润是570元.【点睛】考查二元一次方程组的应用、一元一次不等式组解法和应用以及一次函数的图象和性质等知识,搞清这些知识之间的相互联系是解决问题的前提和必要条件.15.(2023·黑龙江牡丹江·中考真题)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.【答案】(1)A种家电每件的进价为500元,B种家电每件的进价为600元(2)共有三种购买方案,方案一:购进A种家电65件,B种家电35件,方案二:购进A种家电66件,B种家电34件,方案三:购进A种家电67件,B种家电33件(3)这10件家电中B种家电的件数4件【分析】(1)根据题意设A种家电每件进价为x元,B种家电每件进价为元,建立分式方程求解即可;(2)设购进A种家电a件,购进B种家电件,建立不等式,求解不等式,选择符合实际的解即可;(3)设A种家电拿出件,则B种家电拿出件,根据题意,建立一元一次方程求解即可.【详解】(1)设A种家电每件进价为x元,B种家电每件进价为元.根据题意,得.解得.经检验是原分式方程的解..答:A种家电每件的进价为500元,B种家电每件的进价为600元;(2)设购进A种家电a件,购进B种家电件.根据题意,得.解得.,.

为正整数,,则,共有三种购买方案,方案一:购进A种家电65件,B种家电35件,方案二:购进A种家电66件,B种家电34件,方案三:购进A种家电67件,B种家电33件;(3)解:设A种家电拿出件,则B种家电拿出件,根据(1)和(2)及题意,当购进A种家电65件,B种家电35件时,得:,整理得:,解得:,不符合实际;当购进A种家电66件,B种家电34件时,得:,整理得:,解得:,不符合实际;当购进A种家电67件,B种家电33件时,得:,整理得:,解得:,符合实际;则B种家电拿出件.【点睛】本题考查分式方程的实际问题,一元一次方程的实际问题与一元一次不等的实际问题,正确理解题意,建立正确的等量关系与不等式是解题的关键,注意结果要符合实际及分式方程的检验.16.(2023·江苏盐城·中考真题)某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买本硬面笔记本(为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a元,则软面笔记本的单价为元,由再多购买5本的费用恰好与按原价购买的费用相同可得,再根据且m,均为正整数,即可求解.【详解】(1)解:设硬面笔记本的单价为x元,则软面笔记本的单价为元,根据题意得,解得,经检验,是原方程的根,且符合题意,故甲商店硬面笔记本的单价为16元;(2)设乙商店硬面笔记本的原价为a元,则软面笔记本的单价为元,由题意可得,解得,根据题意得,解得,为正整数,,,,,,分别代入,可得,,,,,由单价均为整数可得,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.17.(2023·江苏宿迁·模拟预测)甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠?【答案】(1)当累计购物不超过500元时,两商场购物花费一样;(2)当累计购物超过500元而不超过1000元时,乙商场购物花费少;(3)当累计购物超过1000元时,设累计购物元,①累计购物超过1500元时,到甲商场购物花费少;②累计购物超过1000元而不到1500元时,到乙商场购物花费少;③累计购物为1500元时,到甲、乙两商场购物花费一样.【分析】题目主要考查一元一次不等式的应用及分类讨论思想,设累计购物x,分、和三种情况分别求解可得.【详解】解:(1)当累计购物不超过500元时,在甲、乙两商场购物都不享受优惠且两商场以同样价格出售同样的电器,因此到两商场购物花费一样.(2)当累计购物超过500元而不超过1000元时,享受乙商场的购物优惠不享受甲商场的购物优惠,因此到乙商场购物花费少.(3)当累计购物超过1000元时,设累计购物元.①若到甲商场购物花费少,则.解得.这就是说,累计购物超过1500元时,到甲商场购物花费少.②若到乙商场购物花费少,则.解得.这就是说,累计购物超过1000元而不到1500元时,到乙商场购物花费少.③若.解得.这就是说,累计购物为1500元时,到甲、乙两商场购物花费一样.18.(2022·江苏无锡·中考真题)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)x的值为2m;(2)当时,矩形养殖场的总面积最大,最大值为m2【分析】(1)由BC=x,求得BD=3x,AB=8-x,利用矩形养殖场的总面积为36,列一元二次方程,解方程即可求解;(2)设矩形养殖场的总面积为S,列出矩形的面积公式可得S关于x的函数关系式,再根据二次函数的性质求解即可.【详解】(1)解:∵BC=x,矩形CDEF的面积是矩形BCFA面积的2倍,∴CD=2x,∴BD=3x,AB=CF=DE=(24-BD)=8-x,依题意得:3x(8-x)=36,解得:x1=2,x2=6(不合题意,舍去),此时x的值为2m;;(2)解:设矩形养殖场的总面积为S,由(1)得:S=3x(8-x)=-3(x-4)2+48,∵墙的长度为10,∴0<3x<10,∴0<x<,∵-3<0,∴x<4时,S随着x的增大而增大,∴当x=时,S有最大值,最大值为,即当时,矩形养殖场的总面积最大,最大值为m2.【点睛】本题考查了一元二次方程和二次函数在几何图形问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.19.(2022·江苏淮安·中考真题)端午节前夕,某超市从厂家分两次购进、两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进品牌粽子100袋和品牌粽子150袋,总费用为7000元;第二次购进品牌粽子180袋和品牌粽子120袋,总费用为8100元.(1)求、两种品牌粽子每袋的进价各是多少元;(2)当品牌粽子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论