安徽省合肥三十五中2025届高二上数学期末统考模拟试题含解析_第1页
安徽省合肥三十五中2025届高二上数学期末统考模拟试题含解析_第2页
安徽省合肥三十五中2025届高二上数学期末统考模拟试题含解析_第3页
安徽省合肥三十五中2025届高二上数学期末统考模拟试题含解析_第4页
安徽省合肥三十五中2025届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥三十五中2025届高二上数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.与直线关于轴对称的直线的方程为()A. B.C. D.2.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.3.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.44.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.15.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.6.圆的圆心坐标与半径分别是()A. B.C. D.7.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.8.设直线,.若,则的值为()A.或 B.或C. D.9.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.710.甲烷是一种有机化合物,分子式为,其在自然界中分布很广,是天然气、沼气的主要成分.如图所示的为甲烷的分子结构模型,已知任意两个氢原子之间的距离(H-H键长)相等,碳原子到四个氢原子的距离(C-H键长)均相等,任意两个H-C-H键之间的夹角为(键角)均相等,且它的余弦值为,即,若,则以这四个氢原子为顶点的四面体的体积为()A. B.C. D.11.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.12.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线上一点P到的距离最小值为___________.14.直线与直线的夹角大小等于_______15.曲线在处的切线方程是________.16.若实数、满足,则的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面18.(12分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.19.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和20.(12分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由21.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域22.(10分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.2、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A3、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.4、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.5、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.6、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.7、B【解析】依据导函数得到函数的单调性,数形结合去求解即可解决.【详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B8、A【解析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【详解】因为,则,解得或.故选:A.9、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D10、A【解析】利用余弦定理求得,计算出正四面体的高,从而计算出正四面体的体积.【详解】设,则由余弦定理知:,解得,故该正四面体的棱长均为由正弦定理可知:该正四面体底面外接圆的半径,高故该正四面体的体积为故选:A11、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.12、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设出点P的坐标,利用两点间距离公式结合二次函数求出最小值即可作答.【详解】设,则,即,于是得,而,则当时,,所以双曲线上一点P到的距离最小值为2.故答案为:214、##【解析】根据直线的倾斜角可得答案.【详解】直线是与轴平行的直线,直线的斜率为1,即与轴的夹角为角,故直线与直线的夹角大小等于.故答案为:.15、【解析】求出函数的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.【详解】解:由函数知,把代入得到切线的斜率则切线方程为:,即.故答案为:【点睛】本题考查导数的几何意义,属于基础题16、【解析】直接利用换元法以及基本不等式,求出结果【详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.18、(1)(2)16【解析】(1)设抛物线的标准方程为:,再代入求解即可.(2)根据焦点弦公式求解即可.【小问1详解】由题意知抛物线C的对称轴是y轴,点在曲线C上,所以抛物线开口向上,设抛物线的标准方程为:,代入点的坐标得:,解得则抛物线的标准方程为:.【小问2详解】焦点,则直线的方程是,设,,由得,,所以,则,故.19、(1)证明见解析;(2).【解析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故20、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知条件可列出关于的方程,从而可求出的值.【详解】证明:过作于点,则,以为原点,,,所在的直线分别为,,轴建立如图所示的空间直角坐标系则,,,

,,,∵为的中点.∴.则,,,设平面的法向量为,则令,则,,∴.∴,即,又平面.∴平面解:令,,设,∴.∴,∴

.由知,平面的法向量为.∵直线与平面所成角的正弦值为,∴,化简得,即,∵,∴,故【点睛】本题考查了利用空间向量证明线面平行,考查了平面法向量的求解,属于中档题.21、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【点睛】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论