版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省定兴中学数学高二上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.2.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.3.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.4.在空间直角坐标系中,,,若∥,则x的值为()A.3 B.6C.5 D.45.设为空间中的四个不同点,则“中有三点在同一条直线上”是“在同一个平面上”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日7.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.8.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80009.已知命题p:,,则命题p的否定为()A., B.,C, D.,10.已知点是椭圆上一点,点,则的最小值为A. B.C. D.11.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.12.在空间直角坐标系中,已知点A(1,1,2),B(-3,1,-2),则线段AB的中点坐标是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)二、填空题:本题共4小题,每小题5分,共20分。13.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球14.若与直线垂直,那么__________15.设、、是三个不同的平面,、是两条不同的直线,给出下列三个结论:①若,,则;②若,,则;③若,,则其中,正确结论的序号为__16.已知命题:,总有.则为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)写出下列命题的逆命题、否命题以及逆否命题:(1)若,则;(2)已知为实数,若,则18.(12分)已知函数(1)求f(x)在点处的切线方程;(2)求证:19.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由20.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.21.(12分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.22.(10分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.2、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D3、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.4、D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D5、A【解析】由公理2的推论即可得到答案.【详解】由公理2的推论:过一条直线和直线外一点,有且只有一个平面,可得在同一平面,故充分条件成立;由公理2的推论:过两条平行直线,有且只有一个平面,可得,当时,同一个平面上,但中无三点共线,故必要条件不成立;故选:A【点睛】本题考查点线面的位置关系和充分必要条件的判断,重点考查公理2及其推论;属于中档题;公理2的三个推论:经过一条直线和直线外一点,有且只有一个平面;经过两条平行直线,有且只有一个平面;经过两条相交直线,有且只有一个平面;6、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C7、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A8、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.9、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.10、D【解析】设,则,.所以当时,的最小值为.故选D.11、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.12、B【解析】利用中点坐标公式直接求解【详解】在空间直角坐标系中,点,1,,,1,,则线段的中点坐标是,,,1,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:414、【解析】由两条直线垂直知,得15、①②【解析】利用线面垂直的性质可判断命题①、②的正误;利用特例法可判断命题③的正误.综合可得出结论.【详解】、、是三个不同的平面,、是两条不同的直线.对于①,若,,由同垂直于同一平面的两直线平行,可得,故①正确;对于②,若,,由同垂直于同一直线的两平面平行,可得,故②正确;对于③,若,,考虑墙角处的三个平面两两垂直,可判断、相交,则不正确故答案为:①②【点睛】本题考查空间中线面、面面位置关系有关命题真假的判断,考查推理能力,属于基础题.16、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)(2)根据逆命题、否命题以及逆否命题的定义作答即可;【小问1详解】解:逆命题:若,则;否命题:若,则;逆否命题:若,则【小问2详解】解:逆命题:已知为实数,若,则;否命题:已知为实数,若或,则;逆否命题:已知实数,若,则或18、(1);(2)证明见解析【解析】(1)求导,进而得到,,写出切线方程;(2)将转化为,设,,利用导数法证明.【详解】(1)函数的定义域是,可得又,所以f(x)在点处的切线方程为整理得(或斜截式方程)(2)要证只需证因为,所以不等式等价于设,,;所以在单调递减,在单调递增故又,;所以在单调递增,在单调递减故因为且两个函数的最值点不相等所以有,原不等式得证19、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.20、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.21、(1);(2);(3).【解析】(1)首先以为原点,、、分别为、、轴建立空间直角坐标系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量为,先求,再求二面角的正切值.【详解】(1)以为原点,、、分别为、、轴建立空间直角坐标系.则有、、、.,,所以异面直线与所成角的余弦为(2)设平面的法向量为,则知:;知取,又,点到面的距离所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度咖啡豆原产地保护与发展合同
- 2025版上市公司债券发行及第三方担保合同3篇
- 2025版租赁合同租赁物装修及改造范本2篇
- 2025年度旅游产品代销与分销网络合作协议
- 二零二五年度宠物租赁与宠物行为矫正合作协议
- 2025年度公司对外合作项目员工保密及竞业限制协议
- 2025版酒店客户投诉处理与满意度调查协议3篇
- 2024年阜阳住房租赁合同3篇
- 2024年防水工程劳务分包协议规范化范本一
- 2024年版售楼部购房协议标准格式版B版
- 江西省萍乡市2023-2024学年高一上学期期末考试数学试题(解析版)
- 北师版七年级数学上册期末复习考点 清单04 基本平面图形(12个考点梳理+题型解读+提升训练)
- 仪式外包合同范例
- 2025年上半年中科院大连化学物理研究所金催化研究中心(2302组)招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024-2025学年上学期深圳初中地理七年级期末模拟卷1
- 2025届西藏自治区拉萨市北京实验中学高考数学五模试卷含解析
- 黄土高原课件
- 2025年中国科学技术大学自主招生个人陈述自荐信范文
- 2024-2030年中国抗菌肽行业发展现状及前景趋势分析报告
- 2024年版母公司控股协议2篇
- 气球活动布置合同范例
评论
0/150
提交评论