江苏省十三大市2025届数学高二上期末教学质量检测模拟试题含解析_第1页
江苏省十三大市2025届数学高二上期末教学质量检测模拟试题含解析_第2页
江苏省十三大市2025届数学高二上期末教学质量检测模拟试题含解析_第3页
江苏省十三大市2025届数学高二上期末教学质量检测模拟试题含解析_第4页
江苏省十三大市2025届数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省十三大市2025届数学高二上期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,,则()A. B.C. D.2.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.3.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件4.执行如图所示的程序框图,输出的值为()A. B.C. D.5.等比数列{}中,已知=8,+=4,则的值为()A.1 B.2C.3 D.56.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.97.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.8.在等差数列中,为其前n项和,,则()A.55 B.65C.15 D.609.设曲线在点处的切线与x轴、y轴分别交于A,B两点,O为坐标原点,则的面积等于()A.1 B.2C.4 D.610.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.11.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.12.已知F是抛物线的焦点,直线l是抛物线的准线,则F到直线l的距离为()A.2 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,已知点A,若点P满足,则_______14.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.15.曲线在点处的切线的方程为__________.16.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).18.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.19.(12分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.20.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).21.(12分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值22.(10分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由等差数列的前项和公式和性质进行求解.【详解】由题意,得.故选:C.2、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D3、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.4、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.5、C【解析】由等比数列性质求出公比,将原式化简后计算【详解】设等比数列{}的公比为,则=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故选:C6、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项7、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B8、B【解析】根据等差数列求和公式结合等差数列的性质即可求得.【详解】解析:因为为等差数列,所以,即,.故选:B9、C【解析】求出原函数的导函数,得到函数在处的导数值,写出切线方程,分别求得切线在两坐标轴上的坐标,再由三角形面积公式求解【详解】由,得,,又切线过点,曲线在点处的切线方程为,取,得,取,得的面积等于故选:C10、C【解析】依题意,直线与直线互相垂直,,,故选11、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A12、B【解析】根据抛物线定义即可求解【详解】由得,所以F到直线l的距离为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,表示出,,根据即可得到方程组,解得、、,即可求出的坐标,即可得到的坐标,最后根据向量模的坐标表示计算可得;【详解】解:设,所以,,因为,所以,所以,解得,即,所以,所以;故答案为:14、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题15、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:16、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零点,不符合题意.当时,.令,得.当时,;当时,.所以在上单调递增,在上单调递减.而当时,,时,.所以要使存在两个不同的零点,则,即,解得.因为存在两个不同的零点,则,即.不妨设,则,则,要证,即证,即证,即,.即证,令,则,所以在上单调递增,所以,即,所以成立.综上有.【关键点点睛】解决本题的第(1)问的关键是对导函数的分子因式分解;解决第(2)问的关键一是分步证明,二是研究函数的单调性,三是转化思想的运用,四是换元思想的运用.18、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.19、(1)证明见解析,;(2).【解析】(1)将给定等式变形,计算即可判断数列类型,再求出其通项而得解;(2)利用(1)的结论求出数列的通项,然后利用错位相减法求解即得.【详解】(1)因数列满足,,则,而,于是数列是首项为1,公比为2的等比数列,,即,所以数列是等比数列,,;(2)由(1)知,则于是得,,所以数列的前项和.20、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.21、(1)或(2)【解析】(1)利用正弦定理边化角,然后可解;(2)利用余弦定理求出c,然后检验可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论