版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林市重点中学2025届高二上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,则()A.2 B.6C.12 D.202.抛物线的准线方程是,则实数的值为()A. B.C.8 D.3.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.64.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.5.若,则下列不等式不能成立是()A. B.C. D.6.已知命题:,;命题:,.则下列命题中为真命题的是()A. B.C. D.7.设实数x,y满足,则目标函数的最大值是()A. B.C.16 D.328.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.9.在等差数列中,已知,则()A.4 B.8C.3 D.610.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.11.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.12.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知正项等比数列的前项和为,且,则_______14.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为__________15.如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.16.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难人微”.事实上,很多代数问题可以转化为几何问题加以解决,如:与相关的代数问题可以转化为点与点之间距离的几何问题.结合上述观点,可得方程的解是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,,.(1)求的通项公式;(2)求数列的前项和.18.(12分)圆过点A(1,-2),B(-1,4),求:(1)周长最小的圆的方程;(2)圆心在直线2x-y-4=0上的圆的方程19.(12分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.20.(12分)在等差数列中,已知且(1)求的通项公式;(2)设,求数列前项和21.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.22.(10分)一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线(如图所示).选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为,其中,是常数.(1)当时,判断并证明的奇偶性;(2)当时,若最小值为,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D2、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.3、D【解析】利用正态分布的计算公式:,【详解】且又故选:D4、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A5、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.6、C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C7、C【解析】求的最大值即求的最大值,根据约束条件画出可行域,将目标函数看成直线,直线经过可行域内的点,将目标与直线的截距建立联系,然后得到何时目标值取得要求的最值,进而求得的最大值,最后求出的最大值.【详解】要求的最大值即求的最大值.根据实数,满足的条件作出可行域,如图.将目标函数化为.则表示直线在轴上的截距的相反数.要求的最大值,即求直线在轴上的截距最小值.如图当直线过点时,在轴上的截距最小值.由,解得所以的最大值为,则的最大值为16.故选:C.8、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.9、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B10、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D11、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D12、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件求出正项等比数列的公比即可计算作答.【详解】设正项等比数列的公比为,依题意,,即,而,解得,所以.故答案为:14、##【解析】根据题中几何关系,求得点坐标,代入椭圆方程求得齐次式,整理化简即可求得离心率.【详解】根据题意,取点为第一象限的点,过点作的垂线,垂足为,如下所示:因为△为等边三角形,又,故可得则点的坐标为,代入椭圆方程可得:,又,整理得:,即,解得(舍)或.故答案为:.15、44【解析】先根据题意求出x的值,进而利用方差公式求出A营业员销售量的方差.【详解】由A的平均数比的平均数多1知,A的总量比的总量多5,所以,A的平均数为17,方差为.故答案为:4416、【解析】根据题意,列方程计算即可【详解】因为,所以,可转化为点到点和点的距离之和为,所以点在椭圆上,则,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设的公差为,根据题意列出关于和的方程组,求解方程组,再根据等差数列的通项公式,即可求出结果.(2)对数列中项的正负情况进行讨论,再结合等差数列的前项和公式,即可求出结果.【小问1详解】解:设的公差为d,因为,,所以解得故.【小问2详解】解:设的前项和为,则.当时,,所以所以;当时,.所以.18、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根据当AB为直径时,过A,B的圆的半径最小进行求解即可;(2)根据垂径定理,通过解方程组求出圆心坐标,进而可以求出圆的方程.【详解】解:(1)当AB为直径时,过A,B的圆的半径最小,从而周长最小,即AB中点(0,1)为圆心,半径r=|AB|=.故圆的方程为x2+(y-1)2=10;(2)由于AB的斜率为k=-3,则AB的垂直平分线的斜率为,AB的垂直平分线的方程是y-1=x,即x-3y+3=0.由解得即圆心坐标是C(3,2)又r=|AC|==2.所以圆的方程是(x-3)2+(y-2)2=20.19、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导数求得单调递增,结合,得到,进而证得.【详解】(1)由函数,可得,当时,,在内单调递减;当时,由有,当时,,单调递减;当时,,单调递增.(2)证明:令,则,当时,,单调递增,因为,所以,即,当时,可得,即【点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.20、(1)(2)【解析】(1)由等差数列基本量的计算即可求解;(2)由裂项相消求和法即可求解.【小问1详解】解:由题意,设等差数列的公差为,则,,解得,;【小问2详解】解:,.21、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学教师年度考核个人工作总结范文(三篇)
- 2024年城市个人租房合同范例(二篇)
- 2024年合作社社员大会制度范本(三篇)
- 2024年压疮风险评估与报告制度样本(四篇)
- 2024年实训总结参考范文(四篇)
- 2024年原料贮藏质量控制管理制度范本(二篇)
- 2024年学校物品采购管理制度范文(二篇)
- 2024年学校卫生消毒隔离制度范文(三篇)
- 2024年员工试用期工作总结常用版(四篇)
- 【《科创板IPO会计信息披露的现状与存在的问题探究综述》5200字】
- 海澜之家特许经营协议合同
- 大众汽车入侵北美市场
- 网络安全教育培训课件(共30页).ppt
- 建设银行员工劳动合同
- 《艺术创意与创新管理》课程教学大纲
- (完整版)卸料平台验收表
- 英国建筑工程合同管理模式
- 四年级上数学校本课程
- 人教版高一英语必修一单词表及音标(共28页)
- 《迎送礼仪》PPT课件.ppt
- 院感细菌培养
评论
0/150
提交评论