江西省九江市九江一中2025届高二上数学期末质量检测试题含解析_第1页
江西省九江市九江一中2025届高二上数学期末质量检测试题含解析_第2页
江西省九江市九江一中2025届高二上数学期末质量检测试题含解析_第3页
江西省九江市九江一中2025届高二上数学期末质量检测试题含解析_第4页
江西省九江市九江一中2025届高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市九江一中2025届高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.122.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使3.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率A. B.C. D.4.数列中,,,则()A.32 B.62C.63 D.645.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.86.已知函数,则()A.1 B.2C.3 D.57.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离8.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.9.在中,角A,B,C所对的边分别为a,b,c,若,,的面积为10,则的值为()A. B.C. D.10.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底11.在等差数列中,为数列的前项和,,,则数列的公差为()A. B.C.4 D.12.已知,则点关于平面的对称点的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题p:若,则,那么命题p的否命题为______14.已知数列满足下列条件:①数列是等比数列;②数列是单调递增数列;③数列的公比满足.请写出一个符合条件的数列的通项公式__________.15.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.16.曲线在处的切线方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直四棱柱中,(1)求二面角的余弦值;(2)若点P为棱的中点,点Q在棱上,且直线与平面所成角的正弦值为,求的长18.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.19.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.20.(12分)森林资源是全人类共有的宝贵财富,其在改善环境,保护生态可持续发展方面发挥着重要的作用.2020年12月12日,主席在全球气候峰会上通过视频发表题为《继往开来,开启全球应对气候变化的新征程》的重要讲话,宣布“到2030年,我国森林蓄积量将比2005年增加60亿立方米”.为了实现这一目标,某地林业管理部门着手制定本地的森林蓄积量规划.经统计,本地2020年底的森林蓄积量为120万立方米,森林每年以25%的增长率自然生长,而为了保证森林通风和发展经济的需要,每年冬天都要砍伐掉万立方米的森林.设为自2021年开始,第年末的森林蓄积量.(1)请写出一个递推公式,表示二间的关系;(2)将(1)中的递推公式表示成的形式,其中,为常数;(3)为了实现本地森林蓄积量到2030年底翻两番的目标,每年的砍伐量最大为多少万立方米?(精确到1万立方米)(可能用到的数据:,,)21.(12分)已知直线过点(1)若直线与直线垂直,求直线的方程;(2)若直线在两坐标轴的截距相等,求直线的方程22.(10分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D2、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.3、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.4、C【解析】把化成,故可得为等比数列,从而得到的值.【详解】数列中,,故,因为,故,故,所以,所以为等比数列,公比为,首项为.所以即,故,故选C.【点睛】给定数列的递推关系,我们常需要对其做变形构建新数列(新数列的通项容易求得),常见的递推关系和变形方法如下:(1),取倒数变形为;(2),变形为,也可以变形为;5、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.6、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C7、A【解析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.8、A【解析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A9、A【解析】由同角公式求出,根据三角形面积公式求出,根据余弦定理求出,根据正弦定理求出.【详解】因为,所以,因为,的面积为10,所以,故,从而,解得,由正弦定理得:.故选:A.【点睛】本题考查了同角公式,考查了三角形的面积公式,考查了余弦定理,考查了正弦定理,属于基础题.10、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.11、A【解析】由已知条件列方程组求解即可【详解】设等差数列的公差为,因为,,所以,解得,故选:A12、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、若,则【解析】直接利用否命题的定义,对原命题的条件与结论都否定即可得结果【详解】因为命题:若,则,所以否定条件与结论后,可得命题的否命题为若,则,故答案为若,则,【点睛】本题主要考查命题的否命题,意在考查对基础知识的掌握与应用,属于基础题14、(答案不唯一)【解析】根据题意判断数列特征,写出一个符合题意的数列的通项公式即可.【详解】因为数列是等比数列,数列是单调递增数列,数列公比满足,所以等比数列公比,且各项均为负数,符合题意的一个数列的通项公式为.故答案为:(答案不唯一)15、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.16、【解析】求出函数的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.【详解】解:由函数知,把代入得到切线的斜率则切线方程为:,即.故答案为:【点睛】本题考查导数的几何意义,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)推导出,以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,利用空间向量求二面角的余弦值;(2)设,则,求出平面的法向量,利用空间向量求出的长【详解】解(1)在直四棱柱中,因为平面,平面,平面,所以因为,所以以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的一个法向量为,则,令,则,因为平面,所以平面的一个法向量为,设二面角的平面角为,由图可知为锐角,所以二面角的余弦值为(2)设,则,因为点为的中点,所以,则,设平面一个法向量为,则,令,则,设直线与平面所成角的大小为,因为直线与平面所成角的正弦值为,所以,解得或(舍去)所以【点睛】关键点点睛:此题考查二面角的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,解题的关键是根据是建立空间直角坐标系,利用空间向量求解,属于中档题18、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定理,通过,结合,转化求解即可【小问1详解】【小问2详解】设,设,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴为定值19、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2公比为2的等比数列;【小问2详解】解:由(1)知,,所以,所以,检验时也满足上式,所以,所以,令,所以,故当即时,取得最小值,所以.20、(1);(2).;(3)19万立方米.【解析】(1)由题意得到;(2)若递推公式写成,则,再与递推公式比较系数;(3)若实现翻两番的目标,则,根据递推公式,计算的最大值.【详解】解:(1)由题意,得,并且.①(2)将化成,②比较①②的系数,得解得所以(1)中的递推公式可以化为.(3)因为,且,所以,由(2)可知,所以,即数列是以为首项,为公比的等比数列,其通项公式:,所以.到2030年底的森林蓄积量为该数列的第10项,即.由题意,森林蓄积量到2030年底要达到翻两番的目标,所以,即.即.解得.所以每年的砍伐量最大为19万立方米.【点睛】方法点睛:递推公式求通项公式,有以下几种方法:

型如:的数列的递推公式,采用累加法求通项;

形如:的数列的递推公式,采用累乘法求通项;

形如:的递推公式,通过构造转化为,构造数列是以为首项,为公比的等比数列,

形如:的递推公式,两边同时除以,转化为的形式求通项公式;

形如:,可通过取倒数转化为等差数列求通项公式.21、(1)(2)或【解析】(1)由两条直线垂直可设直线的方程为,将点的坐标代入计算即可;(2)当直线过原点时,根据直线的点斜式方程即可得出结果;当直线不过原点时可设直线的方程为,将点的坐标代入计算即可.【小问1详解】解:因为直线与直线垂直所以,设直线的方程为,因为直线过点,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论