版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省安丘市第二中学高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.2.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是()A.6 B.8C.12 D.184.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.5.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.16.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.107.已知函数,的图象如图,若,,且,则()A.0 B.1C. D.8.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.9.已知,则的取值范围是()A. B.C. D.10.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.14二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,若,则m=____.12.计算__________13.已知函数,则的值是()A. B. C. D.14.已知,若,则实数的取值范围为__________15.已知正实数x,y满足,则的最小值为______16.已知函数,x0R,使得,则a=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.18.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点(1)求的值;(2)已知,求19.如图,在几何体ABCDEF中,平面平面ABFE.正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离20.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值21.已知1与2是三次函数的两个零点.(1)求的值;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.2、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.3、A【解析】由三视图还原几何体:底面等腰直角三角形,高为4的三棱锥,应用棱锥的体积公式求体积即可.【详解】由三视图可得如下几何体:底面等腰直角三角形,高为4的三棱锥,∴其体积.故选:A.4、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积5、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B6、A【解析】先求出高一学生的人数,再利用抽样比,即可得到答案;【详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A7、A【解析】根据图象求得函数解析式,再由,,且,得到的图象关于对称求解.【详解】由图象知:,则,,所以,因在函数图象上,所以,则,解得,因为,则,所以,因为,,且,所以的图象关于对称,所以,故选:A8、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).9、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B10、C【解析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【详解】解:∵,∴,∵,,∴,解得.故答案为:-112、5【解析】化简,故答案为.13、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B14、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题15、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.16、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用偶函数定义求出实数的值;(2)函数在上单调递减,明确函数的最值,得到实数的方程,解出实数的值.试题解析:(1)因为函数是偶函数,所以,即,所以.(2)当时,函数在上单调递减,所以,,又,所以,即,解得(舍),所以.18、(1)(2)【解析】(1)利用三角函数的定义求得,利用和差角公式展开代入求解;(2)利用三角函数的定义求得利用和差角公式展开代入求解.【小问1详解】由角的终边过点,得【小问2详解】(2)由角的终边过点,得且19、(1)证明见解析;(2)【解析】(1)连接BE,证明AF⊥平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,,在正方形中有,且,平面平面,平面,;【小问2详解】设点到平面的距离为,由已知有,,由(1)知:平面,平面,,从而可得:,,在等腰中,底边上的高为:,,由得,,则,即点到平面的距离为20、(1);(2)【解析】(1)先求出角,利用诱导公式即可求出;(2)利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四前期物业服务协议及社区文化活动服务合同3篇
- 2024年高端红酒代理销售合同协议
- 2025年度市场调研服务外包合同4篇
- 二零二四年个性化婴儿护理服务与月嫂雇佣协议3篇
- 2025年茶店加盟管理合同范本简易4篇
- 专业虾苗供应协议模板2024年适用版A版
- 2025年度航空器材产品定制采购服务协议4篇
- 2025年度城市地下综合管廊建设施工合同9篇
- 2025年茶楼茶叶采购与营销推广合同范本4篇
- 2024门店承包与区域市场拓展合同范本3篇
- 《庖丁解牛》获奖课件(省级公开课一等奖)-完美版PPT
- 化工园区危险品运输车辆停车场建设标准
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
- 公积金提取单身声明
评论
0/150
提交评论