版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市十二重点中学2025届高二上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定2.在平行六面体中,点P在上,若,则()A. B.C. D.3.已知直线过点,,则该直线的倾斜角是()A. B.C. D.4.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形5.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.37.一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A. B.C. D.8.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.9.已知数列满足,,则()A. B.C.1 D.210.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得11.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.12.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或二、填空题:本题共4小题,每小题5分,共20分。13.焦点在轴上的双曲线的离心率为,则的值为___________.14.函数在点处的切线方程是_________15.过抛物线的焦点作互相垂直的两条直线,分别交抛物线与A,C,B,D四点,则四边形ABCD面积的最小值为___________16.如图三角形数阵:123456789101112131415……按照自上而下,自左而右的顺序,2021位于第i行的第j列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,,底面,,是的中点.(1)求证:平面;(2)求证:平面平面;(3)设点是平面上任意一点,直接写出线段长度最小值.(不需证明)18.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径的圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点19.(12分)已知抛物线C的方程为:,点(1)若直线与抛物线C相交于A、B两点,且P为线段AB的中点,求直线的方程.(2)若直线过交抛物线C于M,N两点,F为抛物线C的焦点,求的最小值20.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值21.(12分)设函数,(1)求的最大值;(2)求证:对于任意x∈(1,7),e1-x+22.(10分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A2、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C3、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C4、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.5、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A6、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C7、A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.8、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.9、C【解析】结合递推关系式依次求得的值.【详解】因为,,所以,得由,得.故选:C10、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B11、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.12、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将双曲线的方程化为标准式,可得出、,由此可得出关于的等式,即可解得的值.【详解】双曲线的标准方程为,由题意可得,则,,,所以,,解得.故答案为:.14、【解析】求得函数的导数,得到且,再结合直线的点斜式,即可求解.【详解】由题意,函数,可得,则且,所以在点处切线方程是,即故答案为:.15、512【解析】设出直线的方程与抛物线方程联立,结合抛物线的定义、一元二次方程根与系数的关系进行求解即可.【详解】抛物线焦点的坐标为,由题意可知:直线存在斜率且不为零,所以设直线的斜率为,所以直线的方程为,与抛物线的方程联立得:,设,所以,由抛物线的定义可知:,因为直线互相垂直,所以直线的斜率为,同理可得:,所以四边形ABCD面积为:,当且仅当时取等号,即当时取等号,故答案为:51216、69【解析】由图可知,第行有个数,求出第行的最后一个数,从而可分析计算出,即可得出答案.【详解】解:由图可知,第行有个数,第行最后一个数为,因为,所以第行的最后一个数为2016,所以2021位第行,即,又,所以2021位第行第5列,即,所以.故答案为:69.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析(3)【解析】(1)设,连结,根据中位线定理即可证,再根据线面平行的判定定理,即可证明结果;(2)由菱形的性质可知,可证,又底面,可得,再根据面面垂直的判定定理,即可证明结果;(3)根据等体积法,即,经过计算直接写出结果即可.【小问1详解】证明:设,连结.因为底面为菱形,所以为的中点,又因为E是PC的中点,所以.又因为平面,平面,所以平面.【小问2详解】证明:因为底面为菱形,所以.因为底面,所以.又因为,所以平面.又因为平面,所以平面平面.【小问3详解】解:线段长度的最小值为.18、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P的方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点19、(1)(2)16【解析】(1)设,代入抛物线方程由点差法可得答案;(2)设直线为:,,与抛物线方程联立,利用韦达定理和基本不等式可得答案.【小问1详解】设则,由两式相减可得:,,即直线的方程为.【小问2详解】设直线为:,由可得,,,,又因为点坐标为,所以,从而,,所以当且仅当时,有最小值1620、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.21、(1)(2)证明见解析【解析】(1)求出,讨论其导数后可得原函数的单调性,从而可得函数的最大值.(2)先证明任意的,总有,再利用放缩法和换元法将不等式成立问题转化为任意恒成立,后者可利用导数证明.【小问1详解】,当时,;当时,,故在上为增函数,在上为减函数,故.【小问2详解】因为,故当时,,即,而在为减函数,故在上有,故任意的,总有.要证任意恒成立,即证:任意恒成立,即证:任意恒成立,由(1)可得,任意,有即,故即证:任意恒成立,设,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,设,则,而在为增函数,,故存在,使得,且时,,时,,故在为减函数,在为增函数,故任意,总有,故任意恒成立,所以任意恒成立.【点睛】思路点睛:不等式的恒成立,可结合不等式的形式将其转化为若干段上的不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024医疗器械购销合同范本模板
- 2024年危险品运输责任合同模板版
- 2024年度三方租赁权益转让条款合同2篇
- 二零二四年度二手汽车租赁合同with保险责任2篇
- 2024国际海运出口服务合作合同版
- 二手印刷设备购买合同2024年版3篇
- 2024年专业电气安装服务合作合同一
- 二零二四年度版权许可合同甲方音乐制作人與乙方音乐平台就音乐作品许可达成协议3篇
- 2024圆管涵购销合同范本
- 2024年企业信息化建设整体解决方案合同
- 体育文化传承与发展
- 塑胶件常见不良图片及预防措施
- 游戏行业技术风险分析
- 蜂窝组炎护理查房课件
- 银行零售业务发展策略
- 亮点工作总结提炼
- 推拿的适应症及禁忌症
- 2023年马拉松比赛相关行业商业计划书
- 高成炭率酚醛树脂的制备及其在CC复合材料中的应用
- 大学生劳动教育教程(高职)全套教学课件
- 影院改造施工方案
评论
0/150
提交评论