安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题含解析_第1页
安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题含解析_第2页
安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题含解析_第3页
安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题含解析_第4页
安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮南市第二中学2025届高一数学第一学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,若,则a的取值范围是()A. B.C. D.2.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减3.函数在区间上的最大值是A.1 B.C. D.1+4.A B.C.1 D.5.在中,已知,则角()A. B.C. D.或6.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定7.已知函数则的值为()A. B.0C.1 D.28.已知,且满足,则值A. B.C. D.9.已知角的终边经过点P,则()A. B.C. D.10.已知集合,集合为整数集,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.扇形的半径为2,弧长为2,则该扇形的面积为______12.已知为锐角,,,则__________13.已知函数的零点依次为a,b,c,则=________14.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).15.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________16.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥,其中面为的中点.(1)求证:面;(2)求证:面面;(3)求四棱锥的体积.18.已知函数为奇函数,且(1)求函数的解析式;(2)判断函数在的单调性并证明;(3)解关于的x不等式:19.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.20.已知集合,.(1)求;(2)求.21.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D2、A【解析】由可知是奇函数,排除,,且,由可知错误,故选3、C【解析】由,故选C.4、A【解析】由题意可得:本题选择A选项.5、C【解析】利用正弦定理求出角的正弦值,再求出角的度数.【详解】因为,所以,解得:,,因为,所以.故选:C.6、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.7、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.8、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力9、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.10、A【解析】,选A.【考点定位】集合的基本运算.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据扇形的面积公式即可求解.【详解】解:因为扇形的半径为2,弧长为2,所以该扇形的面积为,故答案为:2.12、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.13、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:14、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:15、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等16、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解析】(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥的体积.试题解析:(1)证明:取中点,连接分别是的中点,,且与平行且相等,为平行四边形,,又面面面.(2)证明:为等边三角形,,又面面垂直于面的两条相交直线面面面面面.(3)连接,该四棱锥分为两个三棱锥和.18、(1);(2)在上单调递增,证明见解析;(3).【解析】(1)由奇函数的定义有,可求得的值,又由,可得的值,从而即可得函数的解析式;(2)任取,,且,由函数单调性的定义即可证明函数在上单调递增;(3)由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,又,从而利用单调性即可求解.【小问1详解】解:因为函数为奇函数,定义域为,所以,即,所以,又,所以,所以;【小问2详解】解:在上单调递增,证明如下:任取,,且,则,又,,且,所以,,,所以,即,所以在上单调递增;【小问3详解】解:由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,令,解得或因为,且,所以,所以,解得,又,所以原不等式的解集为.19、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.20、(1)(2)【解析】(1)分别求两个集合,再求交集;(2)先求,再求.【小问1详解】,解得:,即,,解得:,即,;【小问2详解】,.21、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)证明由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论