2025届江西省九江一中数学高二上期末联考模拟试题含解析_第1页
2025届江西省九江一中数学高二上期末联考模拟试题含解析_第2页
2025届江西省九江一中数学高二上期末联考模拟试题含解析_第3页
2025届江西省九江一中数学高二上期末联考模拟试题含解析_第4页
2025届江西省九江一中数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省九江一中数学高二上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.2.在直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.3.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.4.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.5.向量,向量,若,则实数()A. B.1C. D.6.如图,空间四边形OABC中,,,,点M在上,且,点N为BC中点,则()A. B.C. D.7.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.8.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.9.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.10.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.11.已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A. B.2C. D.312.下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线在处的切线方程为,则________14.在等差数列中,,那么等于______.15.已知数列满足,则__________.16.如图,把正方形纸片沿对角线折成直二面角,则折纸后异面直线,所成的角为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小18.(12分)共享电动车(sharedev)是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X的分布列与数学期望.19.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标20.(12分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围21.(12分)在直三棱柱中,、、、分别为中点,.(1)求证:平面(2)求二面角的余弦值22.(10分)已知函数.(1)求的导数;(2)求函数的图象在点处的切线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B2、D【解析】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,则,,,,所以,,,,,因此异面直线与所成角的余弦值等于.故选:D.3、B【解析】先求出,再利用向量的线性运算和数量积计算求解.【详解】解:由题得,,故选:B4、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C5、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.6、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B7、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B8、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A9、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.10、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.11、D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,MF=故=4+4令,故4+4当且仅当,即时取得最小值.故选:D.【点睛】本题考察抛物线中的最值问题,涉及到韦达定理的使用,基本不等式的使用;其中利用的关系,以及抛物线的定义转化目标式,是解决问题的关键.12、B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先求导,由,代入即得解【详解】由题意,故答案为:114、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.15、【解析】由题,用累乘法求得通项公式:,则,通过裂项求和即可得出结果.【详解】由题,所以累乘法求通项公式:,所以,经验证时,符合.所以,则.故答案为:16、##30°【解析】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,进而(或其补角)是所求角,算出答案即可.【详解】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,设所求角为,于是.设原正方形ABCD边长为2,取AC的中点O,连接DO,BO,则且,而平面平面,且交于AC,所以平面ABEC,则.易得,,,而则于是,,.在中,,取DE的中点F,则,所以,即,于是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接,设与相交于点,连接MN,利用余弦定理可求得,,的长度,进而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得证;(2)建立恰当空间直角坐标系,求出两个平面的法向量,然后利用向量法求解二面角的余弦值,从而即可得答案【小问1详解】证明:连接,设与相交于点,连接MN,平面,在平面内,平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面内,,又,平面,又平面,平面平面;【小问2详解】解:由(1)可知直线,,两两互相垂直,所以以点为坐标原点,建立如图所示的空间直角坐标系,则,所以,,设平面的一个法向量为,则,可取;设平面的一个法向量为,则,可取,,平面与平面所成二面角的正弦值为18、(1);(2)分布列见解析,数学期望为.【解析】(1)先求出两种颜色的电动车各有多少辆,然后根据超几何分布求概率的方法即可求得答案;(2)先确定X的所有可能取值,进而求出概率并列出分布列,然后根据期望公式求出答案.【小问1详解】因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A为“从中任取3辆共享单车中恰好有一辆是橙色”,则.【小问2详解】随机变量X的所有可能取值为0,1,2,3.所以,,,.所以分布列为0123数学期望.19、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或20、(1);(2);(3).【解析】(1)利用的关系,根据等比数列的定义求通项公式.(2)由(1)可得,应用裂项相消法求.(3)应用错位相减法求得,由题设有,讨论为奇数、偶数求的取值范围【小问1详解】当时,,可得,当时,,可得,∴是首项、公比都为的等比数列,故.【小问2详解】由(1),,∴.【小问3详解】由题设,,∴,则,∴,由对一切恒成立,令,则,∴数列单调递减,∴当为奇数,恒成立且在上递减,则,当为偶数,恒成立且在上递增,则,综上,.21、(1)见解析;(2)【解析】(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式求解.【详解】(1)证明:如图所示:取中点,连接,易知,、分别为的中点,∴,∴故四边形为平行四边形,∴,∵平面,平面,平面(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论