版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省铜陵市2025届高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.2.函数的零点所在的大致区间是A. B.C. D.3.设,,,则()A. B.C. D.4.已知,,为正实数,满足,,,则,,的大小关系为()A. B.C. D.5.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.6.直线与直线平行,则的值为()A. B.2C. D.07.函数的零点所在的一个区间是()A. B.C. D.8.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.89.函数的图象大致是()A. B.C. D.10.已知函数,下列关于该函数结论错误的是()A.的图象关于直线对称 B.的一个周期是C.的最大值为 D.是区间上的增函数二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,则集合的子集个数为___________.12.若,是夹角为的两个单位向量,则,的夹角为________.13.正三棱柱的侧面展开图是边长为6和12的矩形,则该正三棱柱的体积是_____.14.若,则的值为______15.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________16.设函数,若函数满足对,都有,则实数的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知cos(α-β)cosβ-sin(α-β)sinβ=,<α<2π(1)求sin(2α+)的值;(2)求tan(α-)的值18.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为100万元,每生产万件,需另投入流动成本为万元,在年产量不足19万件时,(万元),在年产量大于或等于19万件时,(万元),每件产品售价为25元,通过市场分析,生产的医用防护用品当年能全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,某厂家在这一商品的生产中所获利润最大?最大利润是多少?19.一次函数是上的增函数,,已知.(1)求;(2)当时,有最大值13,求实数的值.20.已知非空集合,.(1)当时,求,;(2)若“”是“”的充分不必要条件,求的取值范围.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,求:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时候后,学生才能回到教室.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用弧长公式计算即可【详解】,故选:A2、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题3、C【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.【详解】因为,即,,即,,即,所以,故选:C.4、D【解析】设,,,,在同一坐标系中作出函数的图象,可得答案.【详解】设,,,在同一坐标系中作出函数的图象,如图为函数的交点的横坐标为函数的交点的横坐标为函数的交点的横坐标根据图像可得:故选:D5、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.6、B【解析】根据两直线平行的条件列式可得结果.【详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【点睛】易错点点睛:容易忽视纵截距不等这个条件导致错误.7、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B8、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B9、B【解析】根据函数的奇偶性和正负性,运用排除法进行判断即可.【详解】因为,所以函数是偶函数,其图象关于纵轴对称,故排除C、D两个选项;显然,故排除A,故选:B10、C【解析】利用诱导公式证明可判断A;利用可判断B;利用三角函数的性质可判断C;利用复合函数的单调性可判断D.【详解】对于A,,所以的图象关于直线对称,故A正确;对于B,,所以的一个周期是,故B正确;对于C,,所以的最大值为,当时,,取得最大值,所以的最大值为,故C不正确;对于D,在上单调递增,,在上单调递增,在上单调递减,,根据复合函数的单调性易知,在上单调递增,所以是区间上的增函数,故D正确.故选:C.【点睛】关键点点睛:解决本题的关键是熟练掌握函数对称性及周期性的判定及三角函数的图象与性质.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.12、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.13、或【解析】分两种情况来找三棱柱的底面积和高,再代入体积计算公式即可【详解】因为正三棱柱的侧面展开图是边长分别为6和12的矩形,所以有以下两种情况,①6是下底面的周长,12是三棱柱的高,此时,下底面的边长为2,面积为,所以正三棱柱的体积为12②12是下底面的周长,6是三棱柱的高,此时,下底面的边长为4,面积为,所以正三棱柱的体积为24,故答案为或【点睛】本题的易错点在于只求一种情况,应该注意考虑问题的全面性.分类讨论是高中数学的常考思想,在运用分类讨论思想做题时,要做到不重不漏14、0【解析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为015、【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为.故答案为:【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.16、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先根据题目中的条件结合同角公式求出,利用二倍角公式求出,利用两角和的正弦公式即可求出的值(2)根据第一问求得的的值直接求出的值,再利用两角差的正切公式即可求出的值【详解】解:(1)∵cos(α-β)cosβ-sin(α-β)sinβ=,∴cos[(α-β)+β]=,即cos∵<α<2π,∴sinα=∴sin2α=2sinαcosα=,cos2α=∴sin(2α+)=sin2αcos+cos2αsin=;(2)由(1)知,tan,∴tan(α-)==【点睛】本题考查两角和差的正余弦公式及正切公式的灵活运用,以及倍角公式的使用;在做这一类题目时要灵活运用这一同角公式18、(1);(2)当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元【解析】(1)根据题意,分、两种情况可写出答案;(2)利用二次函数和基本不等式的知识,分别求出、时的最大值,然后作比较可得答案.【详解】(1)因为每件商品售价为25元,则万件商品销售收入为万元,依题意得,当时,,当时,,所以;(2)当时,,此时,当时,取得最大值万元,当时,万元,此时,当且仅当,即时,取得最大值180万元,因为,所以当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元19、(1)(2)或.【解析】(1)根据题意设,利用求出值即可;(2)根据为二次函数,讨论对称轴与的关系,可得函数最大值,即可求出m.【详解】(1)∵一次函数是上的增函数,∴设,,∴,解得或(不合题意舍去),∴.(2)由(1)得,①当,即时,,解得,符合题意;②当,即时,,解得,符合题意.由①②可得或.【点睛】本题主要考查了函数解析式的应用以及二次函数的图象与性质的应用问题,属于中档题.20、(1),(2)【解析】(1)先解出集合B,再根据集合的运算求得答案;(2)根据题意可知A.B,由此列出相应的不等式组,解得答案.【小问1详解】,,故,;【小问2详解】由题意A是非空集合,“”是“”的充分不必要条件,故得A.B,得,或或,解得,故的取值范围为.21、(1),(2)【解析】分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校食堂后勤管理工作计划例文(四篇)
- 2024年商业合作保密协议标准版本(三篇)
- 2024年学校编辑部工作计划模版(二篇)
- 2024年后勤管理工作计划例文(四篇)
- 2024年学校食堂供货合同参考样本(二篇)
- 2024年单位内部治安保卫制度例文(四篇)
- 2024年小学安全管理工作奖惩制度(四篇)
- 2024年宿管部工作计划例文(四篇)
- 2024年员工劳务合同协议标准范文(二篇)
- 2024年小学财产管理制度(四篇)
- 阜阳职业技术学院2024年教师招聘招聘历年高频500题难、易错点模拟试题附带答案详解
- 2024新信息科技三年级第四单元:创作数字作品大单元整体教学设计
- TBIA 22-2024 骨科疾病诊疗数据集-颈椎退行性疾病
- 考研英语模拟试题一
- 2024至2030年中国油茶行业发展策略分析及投资前景研究报告
- 《人工智能与大数据技术》高职全套教学课件
- 2024年统编版新教材语文小学一年级上册第五单元检测题及答案
- 2024年新苏教版六年级上册科学全册知识点(超全)
- 统编版语文四年级上册第五单元 跟作家学写作 把事情写清楚单元任务群整体公开课一等奖创新教学设计
- TLCM组装贴合制程工艺介绍-
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
评论
0/150
提交评论