版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市怀仁县一中2025届高一上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件2.若函数取最小值时,则()A. B.C. D.3.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.4.与2022°终边相同的角是()A. B.C.222° D.142°5.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1156.命题“,使得”的否定是()A., B.,C., D.,7.如图,在矩形中,是两条对角线的交点,则A. B.C. D.8.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°10.已知集合,,若,则实数a值的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是________12.函数f(x)为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.13.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).14.设某几何体的三视图如图所示(单位:m),则该几何体的体积为________15.已知,,,则,,的大小关系是______.(用“”连接)16.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数是定义在上的奇函数,且.(1)确定函数的解析式;(2)用定义证明在上是增函数.18.若=,是第四象限角,求的值.19.定义在上的函数满足对于任意实数,都有,且当时,,(1)判断的奇偶性并证明;(2)判断的单调性,并求当时,的最大值及最小值;(3)解关于的不等式.20.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.21.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C2、B【解析】利用辅助角公式化简整理,得到辅助角与的关系,利用三角函数的图像和性质分析函数的最值,计算正弦值即可.【详解】,其中,因为当时取得最小值,所以,故.故选:B.3、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D4、C【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.5、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D6、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B7、B【解析】利用向量加减法的三角形法则即可求解.【详解】原式=,答案为B.【点睛】主要考查向量的加减法运算,属于基础题.8、B【解析】先解不等式,然后根据充分条件和必要条件的定义判断【详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B9、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A10、D【解析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【点睛】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:12、【解析】当x<0时,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.13、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.14、4【解析】根据三视图确定该几何体为三棱锥,由题中数据,以及棱锥的体积公式,即可求出结果.【详解】由三视图可得:该几何体为三棱锥,由题中数据可得:该三棱锥的底面是以为底边长,以为高的三角形,三棱锥的高为,因此该三棱锥的体积为:.故答案为:.【点睛】本题主要考查由几何体的三视图求体积的问题,熟记棱锥的结构特征,以及棱锥的体积公式即可,属于基础题型.15、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,,所以故答案为:16、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由函数是定义在上的奇函数,则,解得的值,再根据,解得的值从而求得的解析式;(2)设,化简可得,然后再利用函数的单调性定义即可得到结果【详解】解:(1)依题意得∴∴∴(2)证明:任取,∴∵,∴,,,由知,,∴.∴.∴在上单调递增.18、【解析】先计算正弦与正切,利用诱导公式化简可得【详解】若=,是第四象限角,则原式=.19、(1)奇函数,证明见解析;(2)在上是减函数.最大值为6,最小值为-6;(3)答案不唯一,见解析【解析】(1)令,求出,再令,由奇偶性的定义,即可判断;(2)任取,则.由已知得,再由奇函数的定义和已知即可判断单调性,由,得到,,再由单调性即可得到最值;(3)将原不等式转化为,再由单调性,即得,即,再对b讨论,分,,,,共5种情况分别求出它们的解集即可.【详解】(1)令,则,即有,再令,得,则,故为奇函数;(2)任取,则.由已知得,则,∴,∴在上是减函数由于,则,,.由在上是减函数,得到当时,的最大值为,最小值为;(3)不等式,即为.即,即有,由于在上是减函数,则,即为,即有,当时,得解集为;当时,即有,①时,,此时解集为,②当时,,此时解集为,当时,即有,①当时,,此时解集为,②当时,,此时解集为【点睛】本题考查抽象函数的基本性质和不等式问题,常用赋值法探索抽象函数的性质,本题第三小问利用函数性质将不等式转化为含参的一元二次不等式的求解问题,着重考查分类讨论思想,属难题.20、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【详解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.21、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术品市场风险评估-洞察分析
- 全民反诈宣传活动总结(5篇)
- 虚拟偶像与粉丝经济互动-洞察分析
- 舆情引导关键技术-洞察分析
- 加衣御寒三分钟演讲稿范文(7篇)
- 办公空间变革对中小企业的影响分析
- 办公环境中客户服务的个性化服务流程
- 办公环境下的交通安全风险与应对
- 办公空间优化设计的使用体验与效益研究
- 2025运输合同格式范文
- GB/T 20946-2007起重用短环链验收总则
- GB/T 20793-2015苎麻精干麻
- 无功补偿安装施工技术措施
- 课程设计-设计一台上料机液压系统
- 内科学万能公式
- 双减背景下小学语文作业的有效设计课件
- 国开成本会计第15章综合练习试题及答案
- DB31-T 836-2021 制冷剂使用技术通则
- 服装类供货服务方案
- 基坑土方施工方案评审意见
- 会阴阻滞麻醉完整版PPT课件
评论
0/150
提交评论