




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省湘西土家族苗族自治州2025届数学高二上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.82.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.3.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项4.宋元时期数学名著《算学启蒙》中有关于“松竹并生"的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,分别为3,1,则输出的等于A.5 B.4C.3 D.25.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.6.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里7.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.8.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同9.不等式的解集是()A. B.C.或 D.或10.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.11.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得12.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.必然事件的概率是________.14.已知点,,点P在x轴上,且,则点P的坐标为______15.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________16.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.18.(12分)已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.19.(12分)已知函数.(1)设函数,讨论在区间上的单调性;(2)若存在两个极值点,()(极值点是指函数取极值时对应的自变量的值),且,证明:.20.(12分)已知函数f(x)=x3﹣3ax2+2bx在x=处有极大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.21.(12分)已知函数(1)当时,求的单调区间与极值;(2)若不等式在区间上恒成立,求k的取值范围22.(10分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.2、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.3、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C4、B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】解:当n=1时,a=3,b=2,满足进行循环的条件,当n=2时,a,b=4,满足进行循环的条件,当n=3时,a,b=8,满足进行循环的条件,当n=4时,a,b=16,不满足进行循环的条件,故输出的n值为4,故选:B【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答5、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C6、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.7、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C8、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:9、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A10、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B11、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定12、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】直接由必然事件的定义求解【详解】因为必然事件是一定要发生的,所以必然事件的概率是1,故答案为:114、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:15、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:16、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)由已知设圆C的方程为,点代入计算即可得出结果.(2)由已知可得圆心C到直线的距离,利用点到直线的距离公式计算即可求得值.【小问1详解】设圆心坐标为,半径为,圆C的圆心在直线上,.则圆C的方程为,圆C过点,则,解得:则,圆C的圆心坐标为.则圆C的方程为;【小问2详解】圆心C到直线的距离.则,解得或18、(1);(2).【解析】(1)根据椭圆离心率公式,结合代入法进行求解即可;(2)根据直线与椭圆的位置关系求出点的坐标,结合平面向量垂直的性质进行求解即可.【详解】(1)由已知得,,而,解得,椭圆的方程为;(2)设直线方程为代入得,化简得由,得,,设,则,,则设,则,则,所以在轴存在使.,,所以在.19、(1)答案见解析(2)证明见解析【解析】(1)由题意得,然后对其求导,再分,两种情况讨论导数的正负,从而可求出函数的单调区间,(2)由(1)结合零点存在性定理可得在和上各有一个零点,且是的两个极值点,再将极值点代入导函数中化简结合已知可得,,从而将要证的结论转化为证,令,再次转化为利用导数求的最小值大于零即可【小问1详解】由,得,则,当时,在上单调递增;当时,令.当时,单调递增;当时,单调递减.综上,当时,的增区间为,无减区间当时,的增区间为,减区间为小问2详解】由(1)知若存在两个极值点,则,且,且注意到,所以在和上各有一个零点,且时,单调递减;当时,单调递增;当时,单调递减.所以是的两个极值点.,因为,所以,所以,所以,即,所以而,所以,所以,要证,即要证即要证:因为,所以所以,即要证:即要证:令,即要证:即要证:令当时,,所以在上单调增所以结论得证.【点睛】关键点点睛:此题考查导数的应用,考查利用求函数的单调区间,考查利用导数证明不等式,解题的关键是将两个极值点代入导函数中化简后,将问题转化为证明成立,换元后构造函数,再利用导数证明,考查数学转化思想和计算能力,属于较难题20、(1)(2)【解析】(1)由于在点处有极小值,所以,从而可求出、的值;(2)由(1)可得,得在区间上单调递减,在区间上单调递增,从而可求出其值域.【小问1详解】因为函数在处有极大值,所以,①且②联立①②得:;【小问2详解】由(1)得,所以,由得;由得,所以,函数区间上单调递减,在区间上单调递增;又,所以在上的值域为.21、(1)在上单调递增,在上单调递减,极大值为﹣1,无极小值(2)【解析】(1)利用导数求出单调区间,即可求出极值;(2)令,利用分离参数法得到,利用导数求出的最大值即可求解.【小问1详解】当时,,定义域为,当时,,单调递增;当时,,单调递减∴当时,取得极大值﹣1所以在上单调递增,在上单调递减极大值为﹣1,无极小值【小问2详解】由,得,令,只需.求导得,所以当时,,单调递增,当时,,单调递减,∴当时,取得最大值,∴k的取值范围为22、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 屋面防水劳务分包合同
- 文化创意产业发展项目投资合同书
- 运输承包合同书
- 吸粪车租赁合同
- 买卖中介居间合同
- 民宿预订合同
- 钻机承包合同
- 武汉工程大学邮电与信息工程学院《运动康复治疗技术》2023-2024学年第二学期期末试卷
- 昆明卫生职业学院《JavaWeb框架应用开发实验》2023-2024学年第二学期期末试卷
- 永州师范高等专科学校《局部解剖学1》2023-2024学年第二学期期末试卷
- 出租共享菜园合同范例
- 八年级班主任学生心理健康计划
- 整体施工劳务服务方案
- 传统节日端午节模板37
- 2025年泰山职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025春季开学第一次全体教师会上校长讲话稿
- 2025年三方买卖协议标准版本(2篇)
- 【历史】唐朝建立与“贞观之治”课件-2024~2025学年统编版七年级历史下册
- 《小脑梗死护理查房》课件
- 江西专业红娘培训课件
- 接地系统安装施工方案
评论
0/150
提交评论