2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题含解析_第1页
2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题含解析_第2页
2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题含解析_第3页
2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题含解析_第4页
2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省北师大贵阳附中数学高二上期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.122.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.3.已知向量=(3,0,1),=(﹣2,4,0),则3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)4.命题“”的一个充要条件是()A. B.C. D.5.设椭圆:的右顶点为,右焦点为,为椭圆在第二象限内的点,直线交椭圆于点,为原点,若直线平分线段,则椭圆的离心率为A. B.C. D.6.等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.8.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.9.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.10.已知双曲线,则“”是“双曲线的焦距大于4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关12.已知命题,命题,,则下列命题中为真命题的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为_______.14.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)15.若实数x,y满足约束条件,则的最大值是_________.16.滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中的“落霞与孤鹜齐飞,秋水共长天一色”而名传千古,流芳后世.如图,在滕王阁旁地面上共线的三点,,处测得阁顶端点的仰角分别为,,.且米,则滕王阁高度___________米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,(1)分别求数列的通项公式和前项和;(2)设,求18.(12分)已知等差数列的前和为,数列是公比为2的等比数列,且,(1)求数列和数列的通项公式;(2)现由数列与按照下列方式构造成新的数列①将数列中的项去掉数列中的项,按原来的顺序构成新数列;②数列与中的所有项分别构成集合与,将集合中的所有元素从小到大依次排列构成一个新数列;在以上两个条件中任选一个做为已知条件,求数列的前30项和.19.(12分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标20.(12分)圆与轴的交点分别为,且与直线,都相切(1)求圆的方程;(2)圆上是否存在点满足?若存在,求出满足条件的所有点的坐标;若不存在,请说明理由.21.(12分)已知函数.(1)讨论的单调性;(2)当a=1时,对于任意的,,都有恒成立,则m的取值范围.22.(10分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B2、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D3、A【解析】直接根据空间向量的线性运算,即可得到答案;【详解】,故选:A4、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D5、B【解析】如上图,设AC中点为M,连OM,则OM为的中位线,易得∽,且,即可得,选B.点睛:本题主要考查椭圆的方程和性质,主要是离心率的求法,本题的关键是利用中位线定理和相似三角形定理6、B【解析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件故选:B【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程7、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.8、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A9、B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B10、A【解析】先找出“双曲线的焦距大于4”的充要条件,再进行判断即可【详解】若的焦距,则;若,则故选:A11、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.12、D【解析】命题是假命题,命题是真命题,根据复合命题的真值表可判断真假.【详解】因为,故命题是假命题,又命题是真命题,故为假,为假,为假,为真命题,故选D.【点睛】复合命题的真假判断有如下规律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】先求出二项式展开式的通项公式,然后令的次数为0,求出的值,从而可得展开式中的常数项【详解】二项式展开式的通项公式为,令,得,所以展开式中的常数项为故答案为:1514、4500【解析】根据题意可知大圆柱底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案为:4500.15、##【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得的最大值.【详解】,画出可行域如下图所示,由图可知,平移基准直线到点时,取得最大值为.故答案为:16、【解析】设,由边角关系可得,,,在和中,利用余弦定理列方程,结合可解得的值,进而可得长.【详解】设,因为,,,所以,,,.在中,,即①.,在中,,即②,因为,所以①②两式相加可得:,解得:,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用可以求出公差,即可求出数列的通项公式;(2)通过(1)判断符号,进而分和两种情况讨论求解即可.【小问1详解】解:设数列的公差为,,,,【小问2详解】解:由(1)可知,,当时,,当时,,所以当时,,当时,所以.18、(1),(2)答案见解析【解析】(1)由题意可直接得到等比数列的通项公式;求出等差数列的公差,即可得到其通项公式;(2)若选①,则可确定由数列前33项的和减去,即可得答案;若选②,则可确定由数列前27项的和加上,即可得答案.【小问1详解】因为数列为等比数列,且,所以.又因,所以,又,则,故等差数列的通项公式为.【小问2详解】因为,,所以,而若选①因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1632.若选②因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1203.19、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得圆C的方程;(2)求AB所在直线方程,几何关系求弦长,由三角形面积求点线距离,设M所在直线为,由点线距离公式列方程求参数,进而联立直线与圆C求M的坐标【小问1详解】由题意知,AB所在直线的斜率为,又,中点为,所以线段AB的垂直平分线为,即,联立,得,半径,所以圆C的方程为.【小问2详解】由题意,AB所在直线方程为,即,圆心到直线AB的距离为,故,因为三角形MAB的面积为,则点M到直线AB的距离为,设点M所在直线方程为,所以,所以或,当时,联立得:或,当时,联立,无解;所以或20、(1)(2)存在,或【解析】(1)由题意,设圆心,由圆与两直线相切,可得圆心到两直线的距离都等于圆的半径,进而可求,然后求出半径即可得答案;(2)假设圆上存在点满足,利用向量数量积的坐标运算化简,再联立圆的方程即可求解.【小问1详解】解:因为圆与轴的交点分别为,,所以圆心在弦的垂直平分线上,设圆心,又圆与直线,都相切,所以,解得,所以圆心,半径,所以圆的方程为;【小问2详解】解:假设圆上存在点满足,则,即①,又,即②,联立①②可得或,所以存在点或满足.21、(1)答案见解析;(2).【解析】(1)由题可得,利用导数与单调性关系分类讨论即得;(2)由题可得,利用函数的单调性及极值求函数最值即得.【小问1详解】由题可得的定义域为,若,恒有,当时,,当时,,∴在上单调递增,在上单调递减,若,令,得,若,恒有在上单调递增,若,当时,;当时,,故在和上单调递增,在上单调递减,若,当时,;当时,,故在和上单调递增,在上单调递减;综上所述,当,在上单调递增,在上单调递减,当,在和上单调递增,在上单调递减,当,在上单调递增,当,在和上单调递增,在上单调递减;【小问2详解】由(1)知,时,在和上单调递增,在上单调递减;当a=1时,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论