2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东惠东中学高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.2.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.3.空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A. B.C. D.4.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,5.在正方体中,,则()A. B.C. D.6.直线与直线平行,则两直线间的距离为()A. B.C. D.7.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或8.已知数列的前n项和为,,,则()A. B.C. D.9.双曲线的左、右焦点分别为、,过点且斜率为的直线与双曲线的左右两支分别交于P、Q两点,若,则双曲线C的离心率为()A. B.C. D.10.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.11.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量12.已知实数满足方程,则的最大值为()A.3 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点到准线的距离等于__________.14.在空间直角坐标系中,若三点、、满足,则实数的值为__________.15.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______16.已知等比数列的前n项和为,且满足,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积18.(12分)圆过点A(1,-2),B(-1,4),求:(1)周长最小的圆的方程;(2)圆心在直线2x-y-4=0上的圆的方程19.(12分)已知函数,且)的图象经过点和

.(1)求实数,的值;(2)若,求数列前项和

.20.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围21.(12分)已知,,且,求实数的取值范围.22.(10分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B2、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.3、A【解析】由空间向量共面定理构造方程求得结果.【详解】空间四点共面,但任意三点不共线,,解得:.故选:A.4、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.5、A【解析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为,而,所以有,故选:A6、B【解析】先根据直线平行求得,再根据公式可求平行线之间的距离.【详解】由两直线平行,得,故,当时,,,此时,故两直线平行时又之间的距离为,故选:B.7、C【解析】点关于轴的对称点为,由反射光线的性质,可设反射光线所在直线的方程为:,再利用直线与圆相切,可知圆心到直线的距离等于半径,由此即可求出结果【详解】点关于轴的对称点为,设反射光线所在直线的方程为:,化为因为反射光线与圆相切,所以圆心到直线的距离,可得,所以或故选:C8、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D9、C【解析】由,且,可得,再结合,可得,进而在△中,由余弦定理可得到齐次方程,求出即可.【详解】由题意,可得,因为,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,则,即,解得,因为,所以.故选:C.【点睛】方法点睛:本题考查求双曲线的离心率,属于中档题.双曲线离心率的求法:(1)由条件直接求出(或或),或者寻找(或或)所满足的关系,利用求解;(2)根据条件列出的齐次方程,利用转化为关于的方程,解方程即可,注意根据对所得解进行取舍.10、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.11、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.12、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.14、##【解析】分析可知,结合空间向量数量积的坐标运算可求得结果.【详解】由已知可得,,因为,则,即,解得.故答案为:.15、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.16、##31.5【解析】根据等比数列通项公式,求出,代入求和公式,即可得答案.【详解】因为数列为等比数列,所以,又,所以,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化简已知条件,求得,结合余弦定理求得,也即.(2)求得三角形的面积,结合角平分线、中线的性质求得三角形的面积.小问1详解】∵,∴,∴,∴由余弦定理得(负值舍去),即BC=6.【小问2详解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD为BC边的中线,∴,∴.18、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根据当AB为直径时,过A,B的圆的半径最小进行求解即可;(2)根据垂径定理,通过解方程组求出圆心坐标,进而可以求出圆的方程.【详解】解:(1)当AB为直径时,过A,B的圆的半径最小,从而周长最小,即AB中点(0,1)为圆心,半径r=|AB|=.故圆的方程为x2+(y-1)2=10;(2)由于AB的斜率为k=-3,则AB的垂直平分线的斜率为,AB的垂直平分线的方程是y-1=x,即x-3y+3=0.由解得即圆心坐标是C(3,2)又r=|AC|==2.所以圆的方程是(x-3)2+(y-2)2=20.19、(1),(2)【解析】(1)将A、B点坐标代入,计算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分组求和法,结合等比数列的求和公式,即可得答案.【小问1详解】由已知,可得,所以,解得,

.【小问2详解】由(1)得,又,所以,故

.20、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或21、.【解析】求得集合,根据,分和,两种情况讨论,结合二次函数的性质,即可求解.【详解】由题意,集合当时,即,解得,此时满足,当时,要使得,则或,当时,可得,即,此时,满足;当时,可得,即,此时,不满足,综上可知,实数的取值范围为.22、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论