




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省廊坊市名校2025届高一上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数图象向右平移个单位得到函数的图象,已知的图象关于原点对称,则的最小正值为()A.2 B.3C.4 D.62.集合A=,B=,则集合AB=()A. B.C. D.3.若正实数,满足,则的最小值为()A. B.C. D.4.若关于的不等式在恒成立,则实数的取值范围是()A. B.C. D.5.函数,,则函数的图象大致是()A. B.C. D.6.“”是“关于的方程有实数根”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知扇形的弧长是,面积是,则扇形的圆心角的弧度数是()A. B.C. D.或8.对于①,②,③,④,⑤,⑥,则为第二象限角的充要条件是()A.①③ B.③⑤C.①⑥ D.②④9.已知函数的上单调递减,则的取值范围是()A. B.C. D.10.已知指数函数是减函数,若,,,则m,n,p的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________12.若角的终边经过点,则___________13.已知函数,那么的表达式是___________.14.若函数在上单调递减,则实数a的取值范围为___________.15.已知函数,,则它的单调递增区间为______16.计算:()0+_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值18.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值19.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.20.如图,在长方体中,,是与的交点.求证:(1)平面;(2)平面平面.21.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据图象平移求出g(x)解析式,g(x)为奇函数,则g(0)=0,据此即可计算ω的取值.【详解】根据已知,可得,∵的图象关于原点对称,所以,从而,Z,所以,其最小正值为3,此时故选:B2、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.3、B【解析】由基本不等式有,令,将已知等式转化为关于的一元二次不等式,解不等式即可得答案.【详解】解:由题意,正实数满足,则,令,可得,即,解得,或(舍去),所以当且仅当时,取得最小值2,故选:B.4、A【解析】转化为当时,函数的图象不在的图象的上方,根据图象列式可解得结果.【详解】由题意知关于的不等式在恒成立,所以当时,函数的图象不在的图象的上方,由图可知,解得.故选:A【点睛】关键点点睛:利用函数的图象与函数的图象求解是解题关键.5、C【解析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C6、A【解析】根据给定条件利用充分条件、必要条件的定义直接判断作答.【详解】当时,方程的实数根为,当时,方程有实数根,则,解得,则有且,因此,关于的方程有实数根等价于,所以“”是“关于的方程有实数根”的充分而不必要条件.故选:A7、C【解析】根据扇形面积公式,求出扇形的半径,再由弧长公式,即可求出结论.【详解】因为扇形的弧长为4,面积为2,设扇形的半径为,则,解得,则扇形的圆心角的弧度数为.故选:C.【点睛】本题考查扇形面积和弧长公式应用,属于基础题.8、C【解析】利用三角函数值在各个象限的符号判断.【详解】为第二象限角的充要条件是:①,④,⑥,故选:C.9、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题10、B【解析】由已知可知,再利用指对幂函数的性质,比较m,n,p与0,1的大小,即可得解.【详解】由指数函数是减函数,可知,结合幂函数的性质可知,即结合指数函数的性质可知,即结合对数函数的性质可知,即,故选:B.【点睛】方法点睛:本题考查比较大小,比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法,解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时12、【解析】根据定义求得,再由诱导公式可求解.【详解】角的终边经过点,则,所以.故答案为:.13、【解析】先用换元法求出,进而求出的表达式.【详解】,令,则,故,故,故答案为:14、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:15、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为16、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或18、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.19、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写出函数解析式的分段形式.(2)根据(1)所得解析式,将代入求a值即可.【小问1详解】如下图,延长到上的,又,则,∴,当时,;当时,;当时,.综上,.小问2详解】由(1)知:在上,;在上,,整理得,解得(舍)或.综上,或时,.20、(1)见解析;(2)见解析.【解析】⑴连结交于点,连结,推导出,又因为平面,由此证明平面⑵推导出,,从而平面,由此证明平面平面解析:(1)连结交于点,连结,∵,∴.∴.又∵平面,平面,∴平面.(2)∵平面.∴.∵,∴∵与相交,∴平面∵平面.∴平面平面.点睛:本题考查了立体几何中的线面平行及面面垂直,在证明的过程中依据其判定定理证得结果,在证明平行中需要做辅助线,构造平行四边形或者三角形中位线证得线线平行,从而证得线面平行21、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判定定理,即利用线面垂直,证明线面垂直的方法:一是线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江电力职业技术学院《微生物资源与应用》2023-2024学年第二学期期末试卷
- 铁岭师范高等专科学校《药物化学生物学技术》2023-2024学年第二学期期末试卷
- 浙江工商职业技术学院《幼儿语言活动设计》2023-2024学年第一学期期末试卷
- 湖南信息学院《建筑工程专业实验》2023-2024学年第二学期期末试卷
- 烟台科技学院《细胞生物学C》2023-2024学年第二学期期末试卷
- 信阳艺术职业学院《人体生物力学》2023-2024学年第二学期期末试卷
- 微电影拍摄合同协议书
- 合同与协议幼儿园入园协议
- 柴油购销柴油购销合同
- 墙体广告协议合同
- 北师大版二年级数学下册全册10套试卷(附答案)
- 生物药物监测检测报告.docx
- 实验六复方磺胺甲恶唑片含量测定
- 锂电池项目投资预算分析(范文模板)
- 钢丝绳理论重量计算方式
- 浒墅关镇社区家长学校工作台帐(模板)
- 基于UbD理论小说叙事视角的群文阅读设计
- (完整word版)成绩证明模板(一)(word文档良心出品)
- 安全生产标准化创建工作启动会(PPT 87页)
- aci318r08混凝土结构设计规范(中文版)
- 《玉米施肥方案》ppt课件
评论
0/150
提交评论