版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆第十一中学校2025届数学高一上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]2.函数部分图像如图所示,则的值为()A. B.C. D.3.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值4.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.5.若角的终边过点,则A. B.C. D.6.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.7.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-28.已知,则的值是A. B.C. D.9.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②10.已知角的终边经过点,则的值为()A.11 B.10C.12 D.13二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数.则函数的最大值和最小值之积为______12.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________13.已知函数,若有解,则m的取值范围是______14.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______15.求值:___________.16.已知函数(且)只有一个零点,则实数的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.18.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.19.已知且是上的奇函数,且(1)求的解析式;(2)若不等式对恒成立,求取值范围;(3)把区间等分成份,记等分点的横坐标依次为,,设,记,是否存在正整数,使不等式有解?若存在,求出所有的值,若不存在,说明理由.20.设为平面直角坐标系中的四点,且,,(1)若,求点的坐标及;(2)设向量,,若与平行,求实数的值21.设全集为R,集合P={x|3<x≤13},非空集合Q={x|a+1≤x<2a-5},(1)若a=10,求P∩Q;;(2)若,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果2、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.3、C【解析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、A【解析】利用弧长公式计算即可【详解】,故选:A5、D【解析】角的终边过点,所以.由角,得.故选D.6、D【解析】根据直观图画出原图可得答案.【详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D7、D【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.8、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角9、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.10、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8012、(3,0)【解析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为13、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.14、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.15、.【解析】根据指数幂的运算性质,结合对数的运算性质进行求解即可.【详解】,故答案为:16、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为18、(1);(2)的取值为2或3;(3).【解析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.19、(1);(2);(3)存在,正整数或2.【解析】(1)根据,,即可求出的值,从而可求函数的解析式;(2)根据函数的奇偶性和单调性由题意可得到恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;(3)设等分点的横坐标为,.首先根据,可得到函数的图象关于点对称,从而可得到,;进而可求出;再根据,从而只需求即可.【小问1详解】∵是上的奇函数,∴,由,可得,,∵,∴,,所以.又,所以为奇函数.所以.【小问2详解】因为,所以在上单调递增,又为上的奇函数,所以由,得,所以,即恒成立,当时,不等式为不能恒成立,故不满足题意;当时,要满足题意,需,解得,所以实数的取值范围为.【小问3详解】把区间等分成份,则等分点的横坐标为,,又,为奇函数,所以的图象关于点对称,所以,,所以,因为,所以,即.故存在正整数或2,使不等式有解.20、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园食品安全宣传教育活动
- 努力奋斗规划
- 写给老师的感谢信模板集锦八篇
- 猝死患者的护理查房
- 节约用水演讲稿集锦10篇
- 猫教案集锦八篇
- 商场光棍节活动策划
- 小孩不笨观看心得10篇
- 小学德育工作总结
- 乒乓球比赛作文集合8篇
- 《保持乐观心态》课件
- 2024年中国电信广东公司招聘笔试参考题库含答案解析
- 2024年中国华电集团招聘笔试参考题库含答案解析
- 中国心血管病预防指南(2017)
- 空调维保投标方案(技术方案)
- 【教学创新大赛】《数字电子技术》教学创新成果报告
- 咖啡因提取的综合性实验教学
- GONE理论视角下宜华生活财务舞弊案例分析
- 初中语文默写竞赛方案
- 2023电力建设工程监理月报范本
- 汽车空调检测与维修-说课课件
评论
0/150
提交评论