河北省磁县滏滨中学2025届高二上数学期末达标检测试题含解析_第1页
河北省磁县滏滨中学2025届高二上数学期末达标检测试题含解析_第2页
河北省磁县滏滨中学2025届高二上数学期末达标检测试题含解析_第3页
河北省磁县滏滨中学2025届高二上数学期末达标检测试题含解析_第4页
河北省磁县滏滨中学2025届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省磁县滏滨中学2025届高二上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若函数,有大于零的极值点,则A. B.C. D.2.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.3.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.4.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关5.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.6.在数列中,,则等于A. B.C. D.7.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8208.在中,已知,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形9.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.40010.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真11.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题12.点到直线的距离为A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导数为,且,则___________14.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.15.四棱锥中,底面是一个平行四边形,,,,则四棱锥体积为_______16.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.18.(12分)在平面直角坐标系内,椭圆E:过点,离心率为(1)求E的方程;(2)设直线(k∈R)与椭圆E交于A,B两点,在y轴上是否存在定点M,使得对任意实数k,直线AM,BM的斜率乘积为定值?若存在,求出点M的坐标;若不存在,说明理由19.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)20.(12分)如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.21.(12分)设抛物线的焦点为,点在抛物线上,且,椭圆右焦点也为,离心率为(1)求抛物线方程和椭圆方程;(2)若不经过的直线与抛物线交于、两点,且(为坐标原点),直线与椭圆交于、两点,求面积的最大值22.(10分)请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个长方体形状的包装盒,、在上是被切去的等腰直角三角形斜边的两个端点,设(1)求包装盒的容积关于的函数表达式,并求出函数的定义域;(2)当为多少时,包装盒的容积最大?最大容积是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,则,若函数在x∈R上有大于零的极值点即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B考点:利用导数研究函数的极值2、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.3、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.4、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.5、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.6、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律7、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.8、B【解析】利用诱导公式、两角和的正弦公式化简已知条件,由此判断出三角形的形状.【详解】由,得,得,由于,所以,所以.故选:B9、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B10、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.11、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D12、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,而,所以,,故填:.考点:导数14、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:115、【解析】计算,,得到底面,计算,,计算体积得到答案.【详解】由,,所以底面,,故,体积为.故答案为:16.16、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,从而得到,求出椭圆方程;(2)分直线斜率存在和斜率不存在,结合题干条件得到,进而求出直线方程.【小问1详解】∵∴,又的面积最大值,则,所以,从而,,故椭圆的方程为:;【小问2详解】①当直线的斜率存在时,设,代入③整理得,设、,则,所以,点到直线的距离因为,即,又由,得,所以,.而,,即,解得:,此时;②当直线的斜率不存在时,,直线交椭圆于点、.也有,经检验,上述直线均满足,综上:直线的方程为或.【点睛】圆锥曲线中,有关向量的题目,要结合条件选择不同的方法,一般思路有转化为三角形面积,或者线段的比,或者由向量得到共线等.18、(1)(2)存在,或者【解析】(1)由离心率和椭圆经过的点列出方程组,求出,得到椭圆方程;(2)假设存在,设出直线,联立椭圆,利用韦达定理得到两根之和,两根之积,结合斜率乘积为定值得到关于的方程,求出答案.【小问1详解】由题可得,,①由,得,即,则,②将②代入①,解得,,故E的方程为【小问2详解】设存在点满足条件记,由消去y,得.显然,判别式>0,所以,,于是===上式为定值,当且仅当,解得或此时,或所以,存在定点或者满足条件19、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.20、(1)证明见解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形内角和可知即,又因为,再根据面面垂直的判定定理,即可证明结果;(2)取BC中点O,由(1)得:平面BCGF,,以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用空间向量求二面角,即可求出结果.【小问1详解】证明:(1)在中,由正弦定理知:解得因为,所以又因为,所以所以又因为,所以直线平面ABC又因为平面BCGF所以平面平面BCGF【小问2详解】解:取BC中点O,连结OA,OH,由(1)得:平面BCGF,则以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系在中,则,,平面ABC的一个法向量为设平面ACH的一个法向量为因为,所以,取,则设平面APD与平面PDF夹角为,所以.21、(1)抛物线方程为,椭圆方程为(2)【解析】(1)由,可得,继而可得,故,再利用离心率,以及,即得解;(2)设直线方程为,与抛物线联立,,结合韦达定理可得,再与椭圆联立,,韦达定理代入,结合均值不等式即得解【小问1详解】由题意,解得:,故,,,,,所以抛物线方程为,椭圆方程为【小问2详解】设直线方程为,由消去得,,设,,则因,所以或(舍去),所以直线方程为由,消去得,设,,则设直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论