版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市晋州市第一中学2025届高二上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点是A. B.C. D.2.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20223.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A.90 B.75C.60 D.455.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.36.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.8.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块9.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.10.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.11.数列,,,,,中,有序实数对是()A. B.C. D.12.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______14.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;15.某校有高一学生人,高二学生人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为的样本,已知从高一学生中抽取人,则________16.过点作圆的切线,则切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围18.(12分)长方体中,,点分别在上,且.(1)求证:平面;(2)求平面与平面所成角的余弦值.19.(12分)已知向量,.(1)计算和;(2)求.20.(12分)已知点A(-2,0),B(2,0),动点M满足直线AM与BM的斜率之积为,记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)若直线和曲线C相交于E,F两点,求.21.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.22.(10分)已知圆C的圆心为,且圆C经过点(1)求圆C的一般方程;(2)若圆与圆C恰有两条公切线,求实数m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【详解】焦点在轴上,又,故焦点坐标为,故选D.【点睛】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.2、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C3、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D4、A【解析】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.考点:频率分布直方图.5、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.6、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.7、B【解析】根据条件概率的计算公式,得所求概率为,故选B.8、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.9、A【解析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.10、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:11、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:12、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:214、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.15、【解析】根据分层抽样的等比例性质列方程,即可样本容量n.【详解】由分层抽样的性质知:,可得.故答案为:16、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.18、(1)证明见解析.(2)【解析】(1)根据线面垂直的性质和判定可得证;(2)以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系,由面面角的空间向量求解方法可得答案.【小问1详解】证明:长方体中,平面,又平面,又平面,又平面同理可证,而平面,平面【小问2详解】解:以为坐标原点,分以所在直线为轴建立如图所示的空间直角坐标系.从而,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,,则,从而,令,则,得平面的一个法向量为由图示得平面与平面所成的角为锐角,平面与平面所成的角的余弦值为19、(1),;(2).【解析】(1)利用空间向量的坐标运算可求得的坐标,利用向量的模长公式可求得的值;(2)计算出,结合的取值范围可求得结果.【详解】(1),;(2),,因此,.【点睛】本题考查空间向量的坐标运算,同时也考查了利用空间向量的数量积计算向量的夹角,考查计算能力,属于基础题.20、(1),曲线是一个双曲线,除去左右顶点(2)【解析】(1)设,则的斜率分别为,,根据题意列出方程,化简后即得C的方程,根据方程可以判定曲线类型,注意特殊点的去除;(2)联立方程,利用韦达定理和弦长公式计算可得.【小问1详解】解:设,则的斜率分别为,,由已知得,化简得,即曲线C的方程为,曲线一个双曲线,除去左右顶点.【小问2详解】解:联立消去整理得,设,,则,.21、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 构筑美满人生-中国人寿保险公司全新健康保障课件:新康宁系列产品介绍
- 《中国人寿保险公司健康险产品培训课程模板课件-康宁守护重大疾病保障计划》
- 2025广告演员合同范文
- 2025年度知识产权授权使用合同3篇
- 2025自动离职解除劳动合同协议书
- 2025燕晗大厦挖孔桩劳务合同
- 二零二五年酒店式公寓配套设施采购合同3篇
- 二零二五年度建筑节能减排EMC项目合同协议2篇
- 二零二五年度高端建材供应及售后服务合同2篇
- 城市地铁建设长螺旋施工合同
- 机械年终考核述职报告
- 2024年实验室保密协议
- 颂钵疗愈师培训
- 财经素养知识考试题及答案
- 2024年云南大理州鹤庆县农业农村局招聘农技人员6人历年高频500题难、易错点模拟试题附带答案详解
- -长峰医院火灾事故教育
- 《经济法基础》全套教学课件
- 2024年618调味品销售数据解读报告-星图数据x味动中国组委会-202406
- 双方结清赔偿协议书
- 2024年河北省中考物理试卷附答案
- 安徽省安庆四中学2024年中考猜题数学试卷含解析
评论
0/150
提交评论