高考数学(北师大版文)讲义第八章 立体几何与空间向量第1讲 简单几何体的结构三视图和直观图1_第1页
高考数学(北师大版文)讲义第八章 立体几何与空间向量第1讲 简单几何体的结构三视图和直观图1_第2页
高考数学(北师大版文)讲义第八章 立体几何与空间向量第1讲 简单几何体的结构三视图和直观图1_第3页
高考数学(北师大版文)讲义第八章 立体几何与空间向量第1讲 简单几何体的结构三视图和直观图1_第4页
高考数学(北师大版文)讲义第八章 立体几何与空间向量第1讲 简单几何体的结构三视图和直观图1_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§8.1简单几何体的结构、三视图和直观图最新考纲考情考向分析1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.简单几何体的结构特征、三视图、直观图在高考中几乎年年考查.主要考查根据几何体的三视图求其体积与表面积.对简单几何体的结构特征、三视图、直观图的考查,以选择题和填空题为主.1.简单几何体的结构特征(1)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到.②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.④球可以由半圆或圆绕直径所在直线旋转得到.(2)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形.②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.2.直观图画直观图常用斜二测画法,其规则是:(1)在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴的线段;(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的eq\f(1,2).3.三视图(1)主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等,前后对应.(2)在三视图中,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线面虚线.(3)同一物体放置的位置不同,所画的三视图可能不同.(4)清楚简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.知识拓展1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.2.斜二测画法中的“三变”与“三不变”“三变”eq\b\lc\{\rc\(\a\vs4\al\co1(坐标轴的夹角改变,与y轴平行的线段的长度变为原来的一半,图形改变))“三不变”eq\b\lc\{\rc\(\a\vs4\al\co1(平行性不改变,与x,z轴平行的线段的长度不改变,相对位置不改变))题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.(×)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二教材改编2.由斜二测画法得到:①相等的线段和角在直观图中仍然相等;②正方形在直观图中是矩形;③等腰三角形在直观图中仍然是等腰三角形;④平行四边形的直观图仍然是平行四边形.上述结论正确的个数是()A.0B.1C.2D.3答案B解析逐一考查所给的说法:①相等的线段平行时在直观图中仍然相等,原说法错误;②正方形在直观图中是平行四边形,不是矩形,原说法错误;③等腰三角形在直观图中不是等腰三角形,原说法错误;④平行四边形的直观图仍然是平行四边形,原说法正确.综上可得,结论正确的个数是1.故选B.3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某简单几何体的主视图是三角形,则该几何体不可能是()A.圆柱 B.圆锥C.四面体 D.三棱柱答案A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形.5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为()答案B解析左视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故选B.6.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案eq\f(\r(6),16)a2解析画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图),D′为O′A′的中点.易知D′B′=eq\f(1,2)DB(D为OA的中点),∴S△O′A′B′=eq\f(1,2)×eq\f(\r(2),2)S△OAB=eq\f(\r(2),4)×eq\f(\r(3),4)a2=eq\f(\r(6),16)a2.题型一简单几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3答案A解析①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.下列命题中正确的为________.(填序号)①存在一个四个侧面都是直角三角形的四棱锥;②如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;③圆台的任意两条母线所在直线必相交.答案①③解析①如图中的四棱锥,底面是矩形,一条侧棱垂直于底面,那么它的四个侧面都是直角三角形,故①正确;②如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形,故②错误;③根据圆台的定义和性质可知,命题③正确.所以答案为①③.思维升华(1)关于简单几何体的结构特征辨析关键是紧扣各种简单几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.

题型二简单几何体的三视图命题点1已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥ B.①②③C.④⑤⑥ D.③④⑤答案B解析主视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此主视图是①,左视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此左视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.命题点2已知三视图,判断几何体的形状典例(2017·全国Ⅰ)某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16答案B解析观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×eq\f(1,2)×(2+4)×2=12.故选B.命题点3已知三视图中的两个视图,判断第三个视图典例(2018届辽宁凌源二中联考)如图是一个简单几何体的主视图和俯视图,则它的左视图为()答案B解析由主视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合主视图的宽及俯视图的直径可知其左视图为B,故选B.思维升华三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练(1)(2017·全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63πC.42π D.36π答案B解析方法一(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的eq\f(1,2),所以该几何体的体积V=π×32×4+π×32×6×eq\f(1,2)=63π.故选B.方法二(估值法)由题意知,eq\f(1,2)V圆柱<V几何体<V圆柱,又V圆柱=π×32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.(2)一个几何体的三视图中,主视图和左视图如图所示,则俯视图不可以为()答案C解析A中,该几何体是直三棱柱,∴A有可能;B中,该几何体是直四棱柱,∴B有可能;C中,由题干中主视图的中间为虚线知,C不可能;D中,该几何体是直四棱柱,∴D有可能.题型三简单几何体的直观图典例(2018·福州调研)已知等腰梯形ABCD,上底CD=1,腰AD=CB=eq\r(2),下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.答案eq\f(\r(2),2)解析如图所示,作出等腰梯形ABCD的直观图.因为OE=eq\r(\r(2)2-1)=1,所以O′E′=eq\f(1,2),E′F=eq\f(\r(2),4),则直观图A′B′C′D′的面积S′=eq\f(1+3,2)×eq\f(\r(2),4)=eq\f(\r(2),2).思维升华用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是()A.2+eq\r(2) B.1+eq\r(2)C.4+2eq\r(2) D.8+4eq\r(2)答案D

解析由已知直观图根据斜二测画法规则画出原平面图形,如图所示,∴这个平面图形的面积为eq\f(4×2+2+2\r(2),2)=8+4eq\r(2),故选D.1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案D解析球、正方体的三视图形状都相同、大小均相等.当三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同、大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥 B.三棱锥C.三棱柱 D.三棱台答案C3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()A.a,bB.a,cC.c,bD.b,d答案A解析当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.4.(2018·成都质检)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P-A1B1A的左视图是()答案D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1,A1,A的射影分别是C1,D1,D;AB1的射影为C1D,且为实线,PA1的射影为PD1,且为虚线.故选D.5.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影不可能是()A.三角形 B.正方形C.四边形 D.等腰三角形答案B解析四边形AGFE在该正方体的底面上的投影为三角形,可能为A;四边形AGFE在该正方体的前面上的投影为四边形,可能为C;四边形AGFE在该正方体的底面上的投影为等腰三角形,可能为D;四边形AGFE在该正方体的左侧面上的投影为三角形,可能为A.故选B.6.(2017·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的主视图(等腰直角三角形)和左视图,且该几何体的体积为eq\f(8,3),则该几何体的俯视图可以是()答案CC.7.(2017·东北师大附中、吉林市一中等五校联考)如图所示,在三棱锥D—ABC中,已知AC=BC=CD=2,CD⊥平面ABC,∠ACB=90°.若其主视图、俯视图如图所示,则其左视图的面积为()A.eq\r(6) B.2C.eq\r(3) D.eq\r(2)答案D解析由几何体的结构特征和主视图、俯视图,得该几何体的左视图是一个直角三角形,其中一直角边为CD,其长度为2,另一直角边为底面△ABC的边AB上的中线,其长度为eq\r(2),则其左视图的面积S=eq\f(1,2)×2×eq\r(2)=eq\r(2).8.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()答案B解析由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB1与面ACC1A1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.9.(2017·福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为________.答案2eq\r(2)2eq\r(2).10.(2017·南昌一模)如图,在正四棱柱ABCD—A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P—BCD的主视图与左视图的面积之比为________.答案1∶1解析根据题意,三棱锥P—BCD的主视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;左视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P—BCD的主视图与左视图的面积之比为1∶1.11.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的射影可能是_______.(填出所有可能的序号)答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的射影是①;在平面BCC′B′上的射影是②;在平面ABCD上的射影是③,而不可能出现的射影为④中的情况.12.如图,已知三棱锥P—ABC的底面是等腰直角三角形,且∠ACB=90°,侧面PAB⊥底面ABC,AB=PA=PB=4,则这个三棱锥的三视图中标注的尺寸x,y,z分别是________.答案2eq\r(3),2,2解析由三棱锥及其三视图可知,x为等边△PAB的高,所以x=2eq\r(3),又因为2y为AB的长,所以2y=4,y=2,可得z为点C到AB的距离,由此得z=2.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8B.7C.6D.5答案C解析画出直观图,共六块.14.(2017·湖南省东部六校联考)某三棱锥的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论