版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省东营市胜利二中数学高三第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的对称轴不可能为()A. B. C. D.2.计算等于()A. B. C. D.3.已知函数满足:当时,,且对任意,都有,则()A.0 B.1 C.-1 D.4.已知复数,为的共轭复数,则()A. B. C. D.5.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.6.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.7.已知等差数列的前13项和为52,则()A.256 B.-256 C.32 D.-328.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()A. B. C. D.9.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.510.二项式展开式中,项的系数为()A. B. C. D.11.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.312.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为__________.14.已知是等比数列,若,,且∥,则______.15.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.16.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.18.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.19.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.20.(12分)已知圆外有一点,过点作直线.(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长.21.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)22.(10分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.2、A【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.3、C【解析】
由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.4、C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.5、A【解析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.6、A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.7、A【解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.8、B【解析】
根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.9、D【解析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.10、D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.11、D【解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.12、A【解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3000【解析】
根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.【详解】解:全市30000名高中男生的身高(单位:)服从正态分布,且,则,该市身高高于的高中男生人数大约为.故答案为:.【点睛】本题考查正态曲线的对称性的应用,是基础题.14、【解析】若,,且∥,则,由是等比数列,可知公比为..故答案为.15、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.16、4【解析】
由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先分别表示出,然后根据求解出的值,则的标准方程可求;(2)设出直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.【详解】(1)由题意可得,焦点,,则,,∴解得.抛物线的标准方程为(2)设,设点,,显然直线的斜率不为0.设直线的方程为联立方程,整理可得,,∴,∴要使为定值,必有,解得,∴为定值时,点的坐标为【点睛】本题考查抛物线方程的求解以及抛物线中的定值问题,难度一般.(1)处理直线与抛物线相交对应的定值问题,联立直线方程借助韦达定理形式是常用方法;(2)直线与圆锥曲线的问题中,直线方程的设法有时能很大程度上起到简化运算的作用。18、【解析】
将圆和直线化成普通方程.再根据相切,圆心到直线的距离等于半径,列等式方程,解方程即可.【详解】解:将圆化成普通方程为,整理得.将直线化成普通方程为.因为相切,所以圆心到直线的距离等于半径,即解得.【点睛】本题考查极坐标方程与普通方程的互化,考查直线与圆的位置关系,是基础题.19、(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.20、(1)或(2).【解析】
(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即∴,解得∴直线的方程为∴直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为∴弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.21、(1)(2)填表见解析;不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系【解析】
(1)利用频率分布直方图小长方形的面积和为列方程,解方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《混凝土工程计算题》课件
- 《建筑工程测量概论》课件
- 2024年度体育赛事赞助合同:国际马拉松赛事的赞助事宜3篇
- 消化内镜规范化培训
- 四年级下册课件教学
- 新生儿科喂养护理
- 2024年度二手房购房贷款申请合同2篇
- 人教版教学课件基因控制蛋白质的合成课件上学期
- 2024年度企业清算与破产重组顾问合同2篇
- 《商务制作》课件
- 临床诊疗指南操作规范自查记录
- 燃气公司职业道德培训
- 别墅施工组织设计施工组织设计
- 中华国学智慧树知到期末考试答案2024年
- MOOC 国际交流英语-哈尔滨工业大学 中国大学慕课答案
- 中外政治思想史-形成性测试四-国开(HB)-参考资料
- 沟通技巧与商务礼仪
- 18 奇妙的建筑 (教案)岭南版美术三年级上册
- 小学三通两平台汇报
- 防火巡查记录表防火检查记录表
- “校园周边环境安全隐患”自检自查(排查)记录表
评论
0/150
提交评论