版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省汉中市西乡二中高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,若,,则()A. B.C. D.2.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或53.若函数的定义域是,则函数值域为()A. B.C. D.4.函数的值域为()A. B.C. D.5.函数的零点所在的一个区间是A. B.C. D.6.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.7.已知圆与圆相离,则的取值范围()A. B.C. D.8.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.函数的零点位于区间()A. B.C. D.10.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足:当时,,则______12.已知函数,,则函数的最大值为______.13.函数在一个周期内图象如图所示,此函数的解析式为___________.14.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________15.若,则________.16.幂函数y=f(x)的图象过点(2,8),则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥,其中面为的中点.(1)求证:面;(2)求证:面面;(3)求四棱锥的体积.18.已知为锐角,(1)求的值;(2)求的值19.已知函数的部分图象如图所示,其中.(1)求值;(2)若角是的一个内角,且,求的值.20.下面给出了根据我国2012年~2018年水果人均占有量(单位:)和年份代码绘制的散点图(2012年~2018年的年份代码分别为1~7).(1)根据散点图分析与之间的相关关系;(2)根据散点图相应数据计算得,,求关于的线性回归方程.参考公式:.21.已知角的终边与单位圆交于点(1)写出、、值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.2、A【解析】根据分段函数的解析式,分两种情况讨论分别求得或.【详解】若,则舍去),若,则,综上可得,或,故选A.【点睛】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.3、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A4、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.5、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且7、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法8、A【解析】求解出成立的充要条件,再与分析比对即可得解.【详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【点睛】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.9、C【解析】先研究的单调性,利用零点存在定理即可得到答案.【详解】定义域为.因为和在上单增,所以在上单增.当时,;;而;,由零点存在定理可得:函数的零点位于区间.故选:C10、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】根据偶函数定义,结合时的函数解析式,代值计算即可.【详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.12、##【解析】根据分段函数的定义,化简后分别求每段上函数的最值,比较即可得出函数最大值.【详解】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:13、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.14、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.15、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:16、64【解析】由幂函数y=f(x)=xα的图象过点(2,8)【详解】∵幂函数y=f(x)=xα的图象过点∴2α=8∴f(x)=x∴f(4)=故答案为64【点睛】本题考查幂函数概念,考查运算求解能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解析】(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥的体积.试题解析:(1)证明:取中点,连接分别是的中点,,且与平行且相等,为平行四边形,,又面面面.(2)证明:为等边三角形,,又面面垂直于面的两条相交直线面面面面面.(3)连接,该四棱锥分为两个三棱锥和.18、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.19、(1),,,(2)【解析】(1)根据图象的特征,列式确定的值;(2)根据(1)的结果,代入解析式,得,结合同角三角函数基本关系式,即可求解.【小问1详解】由图象可知,,解得:,,,解得:,当时,,得,因为,所以,综上可知,,,,;【小问2详解】由(1)可知,,即,因为,解得:20、(1)与之间是正线性相关关系(2)【解析】(1)根据散点图当由小变大时,也由小变大可判断为正线性相关关系.(2)由图中数据求出,代入样本中心点求出,即可求出关于的线性回归方程.【详解】(1)由散点图可以看出,点大致分布在某一直线的附近,且当由小变大时,也由小变大,从而与之间是正线性相关关系;(2)由题中数据可得,,从而,,从而所求关于的线性回归方程为.【点睛】本题考查了线性回归方程的求法以及变量之间的关系,属于基础题.21、(1)=;=;=(2)【解析】(1)根据已知角的终边与单位圆交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浴珠珠状沐浴剂市场发展预测和趋势分析
- 2024年度供应链管理及服务合同
- 2024年度技术研发保密录像合同范本
- 2024年度游戏开发合同游戏设计要求
- 2024年度巢湖劳动合同续签申请书指南
- 2024年度宠物店品牌合作合同:宠物店与其他品牌之间的合作推广协议
- 2024年度建筑工程施工合同标的及工程描述
- 2024年度人力资源外包合同:保安人员派遣服务协议
- 羽毛掸市场需求与消费特点分析
- 2024年度健身俱乐部会员合同:关于健身俱乐部与会员之间的服务内容、费用等规定
- 中小学生中医药科普知识竞赛
- 中医养生学复习题
- 2023-2024学年第一学期上海市奉贤区九年级八校联考语文期中试卷
- 小班语言《冬天的小路》课件
- 2023年湖南高考物理第12题的说题稿
- 生物-辽宁省丹东市2023-2024学年高一上学期期中教学质量调研测试试题和答案
- 幕墙施工重难点分析及解决措施
- 国家开放大学《数据结构》课程实验报告(实验5-图的存储方式和应用)参考答案
- 肝穿刺病人术后的护理措施
- 初二(四)班感恩主题
- 幼儿园呕吐培训课件
评论
0/150
提交评论