版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼伦贝尔市莫力达瓦旗尼尔基一中2025届高一上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列哪一项是“”的必要条件A. B.C. D.2.设则的值A.9 B.C.27 D.3.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.815.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是()A.6 B.8C.12 D.186.下列函数中,既是奇函数,又在区间上单调递增的是()A. B.C D.7.已知函数是定义域为奇函数,当时,,则不等式的解集为A. B.C. D.8.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.189.已知正弦函数f(x)的图像过点,则的值为()A.2 B.C. D.110.若xlog34=1,则4x+4–x=A.1 B.2C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.12.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________13.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.14.当时,,则a的取值范围是________.15.若xlog23=1,则9x+3﹣x=_____16.已知幂函数的图象过点,则此函数的解析式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期、最大值、最小值;(2)求函数的单调区间;18.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.19.已知是定义在上的奇函数,且,若,时,有成立.(1)判断在上的单调性,并证明;(2)解不等式;(3)若对所有的恒成立,求实数的取值范围.20.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据必要条件的定义可知:“”能推出的范围是“”的必要条件,再根据“小推大”的原则去判断.【详解】由题意,“选项”是“”的必要条件,表示“”推出“选项”,所以正确选项为D.【点睛】推出关系能满足的时候,一定是小范围推出大范围,也就是“小推大”.2、C【解析】因为,故,所以,故选C.3、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.4、B【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.5、A【解析】由三视图还原几何体:底面等腰直角三角形,高为4的三棱锥,应用棱锥的体积公式求体积即可.【详解】由三视图可得如下几何体:底面等腰直角三角形,高为4的三棱锥,∴其体积.故选:A.6、你7、A【解析】根据题意,由函数的解析式分析可得在为增函数且,结合函数的奇偶性分析可得在上为增函数,又由,则有,解可得的取值范围,即可得答案.【详解】根据题意,当时,,则在为增函数且,又由是定义在上的奇函数,则在上也为增函数,则在上为增函数,由,则有,解得:,即不等式的解集为;故选:A【点睛】本题考查函数奇偶性与单调性结合,解抽象函数不等式,有一定难度.8、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.9、C【解析】由题意结合诱导公式有:.本题选择C选项.10、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:12、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线方程13、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.14、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:15、【解析】由已知条件可得x=log32,即3x=2,再结合分数指数幂的运算即可得解.【详解】解:∵,∴x=log32,则3x=2,∴9x=4,,∴,故答案为:【点睛】本题考查了指数与对数形式的互化,重点考查了分数指数幂的运算,属基础题.16、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),最大值1,最小值-1;(2)在上单调递增;上单调递减;【解析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求的最小正周期、最大值、最小值;(2)利用的性质求函数的单调区间即可.【详解】(1),∴,且最大值、最小值分别为1,-1;(2)由题意,当时,单调递增,∴,,单调递增;当时,单调递减,∴,,单调递减;综上,当,单调递增;,单调递减;【点睛】关键点点睛:应用两角和差公式化简三角函数式并求最小正周期、最值;根据性质确定三角函数的单调区间.18、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函数的最大值.(2)将(1)中求得的角代入正弦函数的递增区间,解出的取值范围,即为函数的递增区间.【试题解析】(Ⅰ),当时,有最大值.(Ⅱ)令,得函数的单调递增区间为【点睛】本题主要考查向量的数量积运算,考查三角函数辅助角公式,考查三角函数最大最小值的求法,考查三角函数单调性即三角函数图像与性质.首先根据向量数量积的运算,化简函数,这是题目中向量坐标运算的运用,化简三角函数要为次数是一次的形如的形式.19、(1)见解析(2)(3)或或【解析】(1)根据条件赋值得,根据奇函数性质得,再根据单调性定义得减函数,(2)利用单调性化简得,结合定义区间得,解方程组得结果,(3)即,再根据单调性得,化简得关于a恒成立的不等式,根据一次函数图像得,解得实数的取值范围.试题解析:证明:(1)在上是减函数任取且,则,为奇函数由题知,,即在上单调递减在上单调递减解得不等式的解集为(3),在上单调递减在上,问题转化为,即,对任意的恒成立令,即,对任意恒成立则由题知,解得或或点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.20、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1)在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴,经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立,在上是奇函数,对于恒成立,又在上是减函数,,即对于恒成立,而函数在上的最大值为2,,∴实数的取值范围为【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.21、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聘用顾问协议书
- 项目经理聘用合同范本
- 质押合同自何时生效
- 2024年度智能制造设备采购与租赁合同3篇
- 流动资金借款合同2024年度范例
- 基于区块链技术的供应链管理服务合同2024年度
- 2024年度医疗服务合同及医疗质量保障协议2篇
- 酒店对客免责协议书范本3篇
- 2024年学生会外联部工作计划(六篇)
- 2024年度艺人经纪合同经纪公司职责与艺人权益2篇
- 圆的标准方程(公开课)(课堂PPT)
- 江苏省城镇燃气安全检查标准(试行)
- 半导体专业用语
- 武汉大学考博推荐信
- 结构化学期末复习-选择题
- MT_T 1172-2019 矿用移动式注浆泵技术条件_(高清版)
- 服装CAD教程适用于ET等软件打板推板的快捷键及功能
- 国内几种常见的离子膜电解槽槽型结构简介
- 公司erp项目激励制度
- 住房公积金提取承诺书(授权书)
- 人教版小学六年级数学毕业升学试卷(附:试卷命题意图、参考答案及评分标准)
评论
0/150
提交评论