版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省六盘水市第七中学2025届高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()3457078636046896082323457889078442125331253007328632211834297864540732524206443812234356773578905642A. B.C. D.2.根据表格中的数据,可以判定函数的一个零点所在的区间为A. B.C. D.3.设集合,,则集合与集合的关系是()A. B.C. D.4.若正实数满足,(为自然对数的底数),则()A. B.C. D.5.已知函数,若,,,则()A. B.C. D.6.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则7.已知函数且,则实数的取值范围为()A. B.C. D.8.若函数的图像向左平移个单位得到的图像,则A. B.C. D.9.已知,,,,则A. B.C. D.10.若,且,则的值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数a,b满足,则的最小值为___________.12.的值是________13.已知函数恰有2个零点,则实数m的取值范围是___________.14.已知函数,若函数有三个零点,则实数的取值范围是________.15.给出下列四个结论:①函数是奇函数;②将函数的图象向右平移个单位长度,可以得到函数的图象;③若是第一象限角且,则;④已知函数,其中是正整数.若对任意实数都有,则的最小值是4其中所有正确结论的序号是________16.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.18.已知是函数的零点,.(Ⅰ)求实数的值;(Ⅱ)若不等式在上恒成立,求实数的取值范围;(Ⅲ)若方程有三个不同的实数解,求实数的取值范围.19.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.20.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?21.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据随机数表依次进行选取即可【详解】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,大于30的数字舍去,重复的舍去,取到数字依次为07,04,08,23,12,则抽取的第5个零件编号为12.故选:【点睛】本题考查简单随机抽样的应用,同时考查对随机数表法的理解和辨析2、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.3、D【解析】化简集合、,进而可判断这两个集合的包含关系.【详解】因为,,因此,.故选:D.4、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C5、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,,,,.故选:A.6、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.7、B【解析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.8、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.9、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题10、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.12、【解析】根据诱导公式以及特殊角的三角函数值求解.【详解】解:故答案为:【点睛】本题考查诱导公式以及特殊角的三角函数值,解答的关键是熟练记忆公式,属于基础题.13、【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.14、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.15、①②④【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断.【详解】对于①,其中,即为奇函数,则①正确;对于②将的图象向右平移个单位长度,即,则②正确;对于③若令,,则,则③不正确;对于④,由题意可知,任意一个长为的开区间上至少包含函数的一个周期,的周期为,则,即,则的最小值是4,则④正确;故答案为:①②④.16、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.18、(Ⅰ)1;(Ⅱ);(Ⅲ)【解析】Ⅰ利用是函数的零点,代入解析式即可求实数的值;Ⅱ由不等式在上恒成立,利用参数分类法,转化为二次函数求最值问题,即可求实数的取值范围;Ⅲ原方程等价于,利用换元法,转化为一元二次方程根的个数进行求解即可【详解】Ⅰ是函数的零点,,得;Ⅱ,,则不等式在上恒成立,等价为,,同时除以,得,令,则,,,故的最小值为0,则,即实数k的取值范围;Ⅲ原方程等价为,,两边同乘以得,此方程有三个不同的实数解,令,则,则,得或,当时,,得,当,要使方程有三个不同的实数解,则必须有有两个解,则,得【点睛】本题主要考查函数与方程根的问题,利用换元法结合一元二次方程根的个数,以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.19、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可.(2)由充分条件知,则有,进而求的取值范围.【小问1详解】,当时,,或,∴或;【小问2详解】由是的充分条件,知:,∴,解得,∴的取值范围为.20、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获利润最大,最大利润为:3800万元.21、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度LNG液化天然气公路运输合同2篇
- 2025年度教育机构教师派遣服务合同范本(2025版)6篇
- 2024年淡水鱼类采购合同范本版B版
- 二零二五年度光伏发电站施工劳务分包合同范本2篇
- 2025版高等教育机构在线课程开发与授权合同3篇
- 2025版离婚后房产交接与分割专项合同3篇
- 2024年环保型汽车车库租赁及充电服务合同3篇
- 2024年电气布线施工合同3篇
- 2024年高效节能电机销售合同范例
- 智能设计辅助系统开发合同
- Lesson-1.-spring-festival(双语课件-春节)
- 小学体育知识树PPT课件(带内容)
- 全球试验室仪器耗材国际品牌简介
- 钢抱箍+工字钢梁在盖梁施工中的应用
- 消防联动调试记录(2)
- 追求“真实、朴实、扎实”的语文课堂
- 螺杆空压机操作规程完整
- 702班素质评价观测学生填写完成情况检查
- 大学学院成绩单(模板)
- 奥林燃烧器说明书(GP130-150H)
- 绩效管理模块-绩效管理与绩效考核制度
评论
0/150
提交评论