版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西旬阳中学2025届高二数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A.22 B.19C.-20 D.-192.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差3.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.114.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.5.“”是“直线和直线垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-137.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.8.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.9.在等差数列中,为其前n项和,,则()A.55 B.65C.15 D.6010.()A. B.C. D.11.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m12.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校老年、中年和青年教师的人数见如表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为______.类别老年教师中年教师青年教师合计人数90018001600430014.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.15.写出一个公比为3,且第三项小于1的等比数列______16.关于曲线,给出下列三个结论:①曲线关于原点对称,但不关于轴、轴对称;②曲线恰好经过4个整点(即横、纵坐标均为整数的点);③曲线上任意一点到原点的距离都不大于.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列和正项等比数列满足(1)求的通项公式;(2)求数列的前n项和18.(12分)已知等差数列满足:,(1)求数列的通项公式,以及前n项和公式;(2)若,求数列的前n项和19.(12分)已知圆心为的圆,满足下列条件:圆心在轴上,与直线相切,且被轴截得的弦长为,圆的面积小于(1)求圆的标准方程;(2)设过点的直线与圆交于不同的两点、,以、为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程,如果不存在,请说明理由20.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和21.(12分)已知椭圆:的左、右焦点分别为,,离心率为,且过点.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于,两点(A、B非椭圆顶点),求的最大值.22.(10分)如图,在三棱柱中,平面,,.(1)求证:平面;(2)点M在线段上,且,试问在线段上是否存在一点N,满足平面,若存在求的值,若不存在,请说明理由?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C2、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.3、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.4、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B5、A【解析】根据直线垂直求出值即可得答案.【详解】解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.故选:A.6、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.7、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C8、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.9、B【解析】根据等差数列求和公式结合等差数列的性质即可求得.【详解】解析:因为为等差数列,所以,即,.故选:B10、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.11、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.12、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,总体中青年教师与老年教师比例为;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即,解得.故答案为.考点:分层抽样.14、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:15、(答案不唯一)【解析】由条件确定该等比数列的首项的可能值,由此确定该数列的通项公式.【详解】设数列的公比为,则,由已知可得,∴,所以,故可取,故满足条件的等比数列的通项公式可能为,故答案为:(答案不唯一)16、①③【解析】设为曲线上任意一点,判断、、是否满足曲线方程即可判断①;求出曲线过的整点即可判断②;由条件利用即可得,即可判断③;即可得解.【详解】设为曲线上任意一点,则,设点关于原点、轴、轴的对称点分别为、、,因为;;;所以点在曲线上,点、点不在曲线上,所以曲线关于原点对称,但不关于轴、轴对称,故①正确;当时,;当,.此外,当时,;当时,.故曲线过整点,,,,,,故②错误;又,所以恒成立,由可得,当且仅当时等号成立,所以,所以曲线上任一点到原点的距离,故③正确.故答案为:①③.【点睛】本题考查了与曲线方程有关的命题真假判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据条件列公差与公比方程组,解得结果,代入等差数列通项公式即可;(2)根据等比数列求和公式直接求解.【详解】(1)设等差数列公差为,正项等比数列公比为,因为,所以因此;(2)数列的前n项和【点睛】本题考查等差数列以及等比数列通项公式、等比数列求和公式,考查基本分析求解能力,属基础题.18、(1),(2)【解析】(1)由,,列出方程组,求得,即可求得数列的通项公式,利用公式可得.(2)由(1)求得,结合“裂项法”求和,即可求解.【详解】(1)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式.(2)由(1)知,可得,所以数列的前项和:.【点睛】关键点睛:本题主要考查了等差数列的通项公式的求解,以及“裂项法”求和的应用,解答本题的关键是将的通项裂成两项的差,利用裂项相消求和,属于中档题.19、(1);(2)不存在,理由见解析.【解析】(1)设圆心,设圆的半径为,可得出,根据已知条件可得出关于实数的方程,求出的值,可得出的值,进而可得出圆的标准方程;(2)分析可知直线的斜率存在,可设直线的方程为,设点、,将直线的方程与圆的方程联立,由可求得的取值范围,列出韦达定理,分析可得,可求得点的坐标,由已知可得出,求出的值,检验即可得出结论.【小问1详解】解:设圆心,设圆的半径为,则,由题意可得,由勾股定理可得,则,由题意可得,解得,则,因此,圆的标准方程为.【小问2详解】解:若直线的斜率不存在,此时直线与轴重合,则、、三点共线,不合乎题意.所以,直线的斜率存在,可设直线的方程为,设点、,联立,可得,,解得或,由韦达定理可得,,则,因为四边形为平行四边形,则,因为,则,则,解得,因为或,因此,不存直线,使得直线与恰好平行.20、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和21、(1)(2)【解析】(1)根据离心率和点在椭圆上建立方程,结合,然后解出方程即可(2)设直线的斜率为,联立直线与椭圆的方程,然后利用韦达定理表示出,两点的坐标关系,并表示出为直线斜率的函数,然后求出的最大值【小问1详解】由椭圆过点,则有:由可得:解得:则椭圆的方程为:【小问2详解】由(1)得,,已知直线不过椭圆长轴顶点则直线的斜率不为,设直线的方程为:设,,联立直线方程和椭圆方程整理可得:故是恒成立的根据韦达定理可得:,则有:由,可得:所以的最大值为:22、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业皮具礼品箱包定制合作合同版
- 2024借款还款协议书样本
- 2024年度互联网金融产品销售合同
- 2024年度房产抵押合同
- 2024年城市住宅小区内墙粉刷工程分包合同版B版
- 二零二四年度专利技术转让承包合同3篇
- 2024年广州市房地产经纪服务协议模板版
- 2024年度建筑施工合同:住宅小区建设与验收3篇
- 2024年度物业管理合同物业管理内容和职责3篇
- 高中信息技术必修说课稿-3.2.1 分析问题1-教科版
- 桥梁施工安全专项施工方案
- GB/T 18601-2024天然花岗石建筑板材
- 人力资源行业员工培训与发展体系设计方案
- 《中国传统文化》课件模板(六套)
- 2025届广东省佛山一中物理高一上期中监测模拟试题含解析
- 闲置学校转让或出租合同(2篇)
- 新能源电站单位千瓦造价标准值(2024版)
- 2024年-2025年《市场调查与预测》考试题库及答案
- 综合性学习-君子自强不息-练习题(教师版)
- 法律顾问服务投标方案(完整技术标)
- 改革开放简史智慧树知到课后章节答案2023年下北方工业大学
评论
0/150
提交评论