2025届湖北省华师一附中高二数学第一学期期末检测试题含解析_第1页
2025届湖北省华师一附中高二数学第一学期期末检测试题含解析_第2页
2025届湖北省华师一附中高二数学第一学期期末检测试题含解析_第3页
2025届湖北省华师一附中高二数学第一学期期末检测试题含解析_第4页
2025届湖北省华师一附中高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省华师一附中高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.2.“”是“直线与直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.经过点且圆心是两直线与的交点的圆的方程为()A. B.C. D.4.复数的共轭复数的虚部为()A. B.C. D.5.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.如图,在空间四边形中,()A. B.C. D.7.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或148.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°9.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.10.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.1211.集合,,则()A. B.C. D.12.直线关于直线对称的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等比数列中,,,则数列的公比为____.14.已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________15.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.16.直线的倾斜角的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面18.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.19.(12分)如图,AB是半圆O的直径,C是半圆上一点,M是PB的中点,平面ABC,且,,.(1)求证:平面PAC;(2)求三棱锥M—ABC体积.20.(12分)如图,四棱锥中,,且,(1)求证:平面平面;(2)若是等边三角形,底面是边长为3的正方形,是中点,求直线与平面所成角的正弦值.21.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.22.(10分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A2、A【解析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断.【详解】由,得,即或所以,反之,则不然所以“”是“直线与直线垂直”的充分不必要条件.故选:A3、B【解析】求出圆心坐标和半径后,直接写出圆的标准方程.【详解】由得,即所求圆的圆心坐标为.由该圆过点,得其半径为1,故圆的方程为.故选:B.【点睛】本题考查了圆的标准方程,属于基础题.4、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B5、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.6、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.7、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C8、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.9、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A10、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.11、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.12、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列的定义,结合已知条件,代值计算即可求得结果.【详解】因为是等比数列,设其公比为,又,,故可得,解得.故答案为:.14、【解析】根据焦点坐标即可得到抛物线的标准方程【详解】因为抛物线的顶点为坐标原点,焦点坐标是,所以,解得,抛物线的标准方程为故答案为:15、【解析】利用正弦定理求得甲驱逐舰与乙护卫舰的距离.【详解】,设甲乙距离,由正弦定理得.故答案为:16、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.18、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.19、(1)证明见解析(2)2【解析】(1)依题意可得,再由平面,得到,即可证明平面;(2)连接,可证,即可得到平面,为三棱锥的高,再根据锥体的体积公式计算可得;【详解】(1)证明:因为是半圆的直径,所以.因为平面,平面,所以,又因为平面,平面,且所以平面.(2)解:因为,,所以,.连接.因为、分别是,的中点,所以,.又平面.所以平面.因此为三棱锥的高.所以.【点睛】本题考查线面垂直的证明,锥体的体积的计算,属于中档题.20、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理,结合面面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,利用空间向量夹角公式,结合线面角定义进行求解即可.【小问1详解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小问2详解】∵平面平面,交AD于点F,平面,平面平面,∴平面,以为原点,,的方向分别为轴,轴的正方向建立空间直角坐标系,则,,,,,,,,设平面的法向量为,则,求得法向量为,由,所以直线与平面所成角的正弦值为.21、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.22、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论