版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届衡水中学高一数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.2.已知函数,若图象过点,则的值为()A. B.2C. D.3.已知函数,当时.方程表示的直线是()A. B.C. D.4.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.5.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数6.已知幂函数的图象过(4,2)点,则A. B.C. D.7.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.8.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.9.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.10.若,则()A. B.-3C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.空间两点与的距离是___________.12.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.13.已知在上是增函数,则的取值范围是___________.14.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________15.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________16.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且满足,求:的值18.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.19.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.20.计算或化简:(1);(2)21.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D2、B【解析】分析】将代入求得,进而可得的值.【详解】因为函数的图象过点,所以,则,所以,,故选:B.3、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C4、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.5、D【解析】根据定义分析判断即可.【详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.6、A【解析】详解】由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A7、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C8、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C9、A【解析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题10、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:12、(1)(3)【解析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【点睛】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.13、【解析】将整理分段函数形式,由在上单调递增,进而可得,即可求解【详解】由题,,显然,在时,单调递增,因为在上单调递增,所以,即,故答案为:【点睛】本题考查已知函数单调性求参数,考查分段函数,考查一次函数的单调性的应用14、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:215、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:16、【解析】利用求解向量间的夹角即可【详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】根据二倍角公式,结合题意,可求得的值,根据降幂公式,两角和的正弦公式,化简整理,根据齐次式的计算方法,即可得答案.【详解】因为,整理可得,解得或因为,所以则18、(1);(2).【解析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根,考虑和两种情况,计算得到答案.【详解】(1)由函数是偶函数可知:,∴,,即对一切恒成立,∴.(2)函数与的图象有且只有一个公共点,即方程有且只有一个实根.化简得:方程有且只有一个实根.令,则方程有且只有一个正根,当时,,不合题意;当且,解得或.若,,不合题意;若,满足;当且时,即或且,故;综上,实数a的取值范围是.【点睛】本题考查了根据函数的奇偶性求参数,函数公共交点问题,意在考查学生的计算能力和综合应用能力,换元是解题关键.19、(1),函数在上单调递减,证明见解析.(2)【解析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)根据函数的奇偶性和单调性得到,设,求函数的最小值得到答案.【小问1详解】函数是定义在上的奇函数,则,,解得,,故.在上单调递减,证明如下:设,则,,,,故,即.故函数在上单调递减.【小问2详解】,即,,,故,即,设,,,,故,又,故.20、(1)(2)1【解析】(1)根据指数幂的运算算出答案即可;(2)根据对数的运算算出答案即可.【小问1详解】【小问2详解】21、(1)(2)在,上单调递减,在,和,上单调递增【解析】(1)由图知,,最小正周期,由,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电动汽车充电设施建设合同3篇
- 铺路钢板租赁合同 路基箱钢板租赁
- 2024二手房购房合同中的维修和保养条款3篇
- 手术标识重要性
- 滑板礼仪知识培训
- 工地食堂承包简单的协议书范本2篇
- 2024年度钢筋混凝土模板质量监控与改进合同2篇
- 个人简单借款合同范本
- 营业执照转让协议书版
- 二零二四年度技术转让合同具体条款和条件
- 《预防校园霸凌+呵护青春远航 》主题班会课件
- 中外政治思想史-形成性测试三-国开(HB)-参考资料
- 四川航空介绍
- 感恩父母励志学习主题班会
- 《预防传染病》 完整版课件
- 电加热设备安全检查表
- 如何应对压力下的时间管理
- (2024版)小学六年级数学空间与图形培养立体思维
- 京东管理者手册
- 辽宁六地红色文化
- 防范暴风雨和台风的基本常识
评论
0/150
提交评论