版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市江阴市2025届高一上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(),对于给定的一个实数,点的坐标可能是()A.(2,1) B.(2,-2)C.(2,-1) D.(2,0)2.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.3.满足不等式成立的的取值集合为()A.B.C.D.4.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.5.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.6.若,则的值为A. B.C. D.7.某几何体的三视图如图所示,数量单位为cm,它的体积是()A. B.C. D.8.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右9.如果不等式成立的充分不必要条件是,则实数a的取值范围是()A. B.C.或 D.或10.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.12.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.13.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____14.若,则___________;15.已知函数的最大值与最小值之差为,则______16.不等式的解集是_____________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求满足以下条件的m值.(1)已知直线2mx+y+6=0与直线(m-3)x-y+7=0平行;(2)已知直线mx+(1-m)y=3与直线(m-1)x+(2m+3)y=2互相垂直.18.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.19.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围20.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.21.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】直接代入,利用为奇函数的性质,得到整体的和为定值.【详解】易知是奇函数,则即的横坐标与纵坐标之和为定值2.故选:D.2、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D3、A【解析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【详解】解:由得:当时,因为的周期为所以不等式的解集为故选:A.4、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题5、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B6、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.7、C【解析】由三视图可知,此几何体为直角梯形的四棱锥,根据四棱锥的体积公式即可求出结果.【详解】由三视图复原几何体为四棱锥,如图:它高为,底面是直角梯形,长底边为,上底为,高为,棱锥的高垂直底面梯形的高的中点,所以几何体的体积为:故选:C【点睛】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状以及几何尺寸,同时需熟记锥体的体积公式,属于基础题.8、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.9、B【解析】解不等式,得其解集,进而结合充分、必要条件与集合间的包含关系的对应关系,可得不等式组,则有,(注:等号不同时成立),解可得答案【详解】解不等式,得其解集,,由于不等式成立的充分不必要条件是则有,(注:等号不同时成立);解得故选B.【点睛】本题考查充分、必要条件的判断及运用,注意与集合间关系的对应即可,属于简单题10、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.12、①.②.【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,13、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题14、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:115、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.16、【解析】利用指数函数的性质即可求解.【详解】,即,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)平行即两直线的斜率相等,建立等式,即可得出答案.(2)直线垂直即两直线斜率之积为-1,建立等式,即可得出答案.【详解】解:(1)当m=0或m=3时,两直线不平行当m0且m3时,若两直线平行,则(2)当m=0或m=时,两直线不垂直当m=1时,两直线互相垂直当m0,1,时,若两直线垂直,则或也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.【点睛】本道题目考查了直线平行或垂直的判定条件,注意,当x,y的系数含有参数的时候,要考虑系数是否为0.18、(1)见解析;(2)【解析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面,面,∴平面.(2)由(1)知,故即为异面直线与所成的角.∵四棱柱的外接球的表面积为,∴四棱柱的外接球的半径,设,则,解得,在直四棱柱中,∵平面,平面,∴,在中,,∴,∴异面直线与所成的角为.19、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)20、(1)(2)【解析】(1)设出圆的方程,代入A、B两点坐标,求出圆心和半径,从而求出圆的方程;(2)先求出交点坐标,进而求出半径,写出圆的方程.【小问1详解】设圆的方程为,由题意得:,解得:,所以圆的方程为;【小问2详解】联立与,解得:,所以交点为,则圆的半径为,所以圆的方程为.21、(1);(2);(3)【解析】(1)根据所有的基本事件的个数为,而所得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文明传播责任状
- 国防生教育培养协议模板
- 工程审计分包合同版
- 水泥砖供应合同格式
- 婚礼摄影摄像服务合同
- 家电零售分销合同
- 专业家政服务小时工合同
- 农村养鸡设备采购合同
- 软件合作开发合同
- 混凝土构件订购合同
- 北师版七年级数学上册期末复习考点 清单04 基本平面图形(12个考点梳理+题型解读+提升训练)
- Pep小学英语六年级上册教案-全册
- 2024粤东西粤北地区教师全员轮训培训心得总结
- 服务类验收单
- MOOC 健身健美-北京林业大学 中国大学慕课答案
- 人生悟理-透过物理看人生智慧树知到期末考试答案2024年
- 教育信息化2.0时代教师新技能进阶智慧树知到期末考试答案2024年
- 国开2023年春《理工英语3》机考网考期末复习资料参考答案
- 中国古建筑行业分析报告
- 蜂产品订购合同范本
- 建筑工程杂填土基坑边坡支护方案及效果评价分析
评论
0/150
提交评论