阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题含解析_第1页
阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题含解析_第2页
阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题含解析_第3页
阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题含解析_第4页
阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阿坝市重点中学2025届高三数学第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A. B.C. D.2.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.1003.已知是偶函数,在上单调递减,,则的解集是A. B.C. D.4.已知函数,若时,恒成立,则实数的值为()A. B. C. D.5.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.6.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.7.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P28.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.9.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为().A. B.C.或 D.或10.已知函数为奇函数,且,则()A.2 B.5 C.1 D.311.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()12.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.14.已知实数满足则点构成的区域的面积为____,的最大值为_________15.已知实数a,b,c满足,则的最小值是______.16.集合,,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且.(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长.18.(12分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.19.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.20.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.21.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.22.(10分)已知直线:(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,,其中,,即关于轴对称故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.2、D【解析】

由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.3、D【解析】

先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.4、D【解析】

通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.5、C【解析】

由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.6、B【解析】

由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.7、C【解析】

将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.8、C【解析】

利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.9、D【解析】

先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【详解】构造函数,则由题可知,所以在时为增函数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.10、B【解析】

由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.11、D【解析】

由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.12、C【解析】

由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可.【详解】如图,设,由,则,由可得,由,则,所以,得.故答案为:2【点睛】此题考查了抛物线的性质,属于中档题.14、811【解析】

画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.15、【解析】

先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.16、【解析】

分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)分斜率为0,斜率不存在,斜率不为0三种情况讨论,设的方程为,可求解得到,,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为0时,,,于是,到的距离为1,直线与圆相切.当的斜率不为0时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为1,直线与圆相切.综上,直线与圆相切.(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.此时,点在椭圆的长轴端点,为.不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,,所以.【点睛】本题考查了直线和椭圆综合,考查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.18、(1);(2).【解析】

(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值.【详解】(1)∵,即,∴变形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,当且仅当时取最大值.故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题19、(1)(2)是,【解析】

(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值.【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为;(2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.20、(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大.【解析】

(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论