版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省庆阳市镇原县镇原中学2025届数学高二上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆与圆的公切线的条数为()A.1 B.2C.3 D.42.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差3.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A. B.1C. D.24.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.5.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;6.从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为()A. B.C. D.7.已知向量与平行,则()A. B.C. D.8.已知数列,,则下列说法正确的是()A.此数列没有最大项 B.此数列的最大项是C.此数列没有最小项 D.此数列的最小项是9.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.110.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知等差数列,,则公差d等于()A. B.C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.14.已知等差数列的通项公式为,那么它的前项和___________.15.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____16.已知,若在区间上有且只有一个极值点,则a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.18.(12分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.19.(12分)如图,四棱台的底面为正方形,面,(1)求证:平面;(2)若平面平面,求直线m与平面所成角的正弦值20.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.21.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.22.(10分)在等比数列{}中,(1),,求;(2),,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.2、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.3、C【解析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C4、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A5、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.6、C【解析】利用古典概型计算公式计算即可【详解】从编号分别为,,,,的五个大小完全相同的小球中,随机取出三个小球共有种不同的取法,恰好有两个小球编号相邻的有:,共有6种所以概率为故选:C7、D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.8、B【解析】令,则,,然后利用函数的知识可得答案.【详解】令,则,当时,当时,,由双勾函数的知识可得在上单调递增,在上单调递减所以当即时,取得最大值,所以此数列的最大项是,最小项为故选:B9、A【解析】利用两直线垂直斜率关系,即可求解.【详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【点睛】本题考查两直线垂直间的关系,属于基础题.10、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.11、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.12、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线方程求出焦点坐标与准线方程,设直线为,、,即可得到的坐标,再联立直线与抛物线方程,消元列出韦达定理,表示出、的坐标,根据得到方程,求出,即可得解;【详解】解:抛物线方程为,则焦点,准线为,设直线为,、,则,由,消去得,所以,,则,,因为,所以,所以,所以,解得,所以,即直线为,所以直线的斜率为;故答案为:14、【解析】由题意知等差数列的通项公式,即可求出首项,再利用等差数列求和公式即可得到答案.【详解】已知等差数列的通项公式为,..故答案为:.15、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:16、【解析】求导得,进而根据题意在上有且只有一个变号零点,再根据零点的存在性定理求解.【详解】解:,∵在区间上有且只有一个极值点,∴在上有且只有一个变号零点,∴,解得∴a的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.18、(1);(2)最大值为-1,最值为-5.【解析】(1)根据给定条件结合函数的导数建立方程,求解方程并验证作答.(2)利用导数探讨函数在上的单调性即可计算作答.【小问1详解】依题意:,则,解得:,当时,,当时,,当时,,则函数在处有极值,所以.【小问2详解】由(1)知:,,,当时,,当时,,因此,在上单调递增,在上单调递减,于是得,而,,则,所以函数在上的最大值为-1,最值为-5.19、(1)证明见解析;(2).【解析】(1):连结交交于点O,连结,,通过四棱台的性质以及给定长度证明,从而证出,利用线面平行的判定定理可证明面;(2)利用线面平行的性质定理以及基本事实可证明,即求与平面所成角的正弦值;通过条件以及面面垂直的判定定理可证明面面,则为与平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【详解】(1)证明:连结交交于点O,连结,,由多面体为四棱台可知四点共面,且面面,面面,面面,∴,∵和均为正方形,,∴,所以为平行四边形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直线m与平面所成角可转化为求与平面所成角,∵和均为正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,设O在面的投影为M,则,∴为与平面所成角,由,可得,又∵,∴∴,直线m与平面所成角的正弦值为.【点睛】思路点睛:(1)找两个平面的交线,可通过两个平面的交点找到,也可利用线面平行的性质找和交线的平行直线;(2)求直线和平面所成角,过直线上一点做平面的垂线,则垂足和斜足连线与直线所成角即为直线和平面所成角.20、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.21、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第二章 医院急诊科的设置管理课件
- 电大国开《法理学》试卷及答案(2套)
- 2024年本溪道路运输客运从业资格证考试
- 2024年东营2024年道路旅客运输从业资格证模拟试题
- 2024年山西客运员考试题库答案
- 甘肃省玉门市玉门一中2025届生物高二上期末考试模拟试题含解析
- 2025届云南省勐海县第三中学生物高三上期末综合测试模拟试题含解析
- 2025届江西省稳派教育语文高三上期末达标测试试题含解析
- 吉林省通化市梅河口市博文学校2025届语文高三第一学期期末考试模拟试题含解析
- 资金托管补充协议
- 第五单元 15.“杂技小演员”岭南版美术二年级上册
- 肝病健康宣教内容课件
- 智能合约在房地产交易中的应用研究
- 新生儿肺炎课件
- 高 IgE 综合征疾病演示课件
- 物理前沿和基础科学问题
- 护士在儿童早期发育干预中的早期评估与早期干预
- 汽修部应急预案
- 办学许可证续期申请书
- 【月考】数学六年级(上)全优好卷第二次月考卷a-北师大版(含答案)
- 公共资源交易中心信息化项目大数据平台设计方案
评论
0/150
提交评论