版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市第三中学2025届数学高二上期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面2.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.3.若,则()A B.C. D.4.若,则下列等式一定成立的是()A. B.C. D.5.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A. B.C.24 D.486.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.7.已知椭圆C:的左,右焦点,过原点的直线l与椭圆C相交于M,N两点.其中M在第一象限.,则椭圆C的离心率的取值范围为()A. B.C. D.8.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.9.设,,,…,,,则()A. B.C. D.10.瑞士数学家欧拉1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是()A. B.C. D.11.已知是空间的一个基底,若,,若,则()A. B.C.3 D.12.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,已知向量,则的值为__________.14.如图,已知底面为正方形且各侧棱均相等的四棱锥可绕着任意旋转,平面,分别是的中点,,,点在平面上的射影为点,则当最大时,二面角的大小是________15.已知函数有三个零点,则实数的取值范围为___________.16.曲线在处的切线斜率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.18.(12分)已知数列是公差不为0的等差数列,数列是公比为2的等比数列,是,的等比中项,,.(1)求数列,的通项公式;(2)求数列的前项和.19.(12分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.20.(12分)已知函数(e为自然对数的底数),(),.(1)若直线与函数,的图象都相切,求a的值;(2)若方程有两个不同的实数解,求a的取值范围.21.(12分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围22.(10分)已知圆经过点和,且圆心在直线上(1)求圆的标准方程;(2)直线过点,且与圆相切,求直线的方程;(3)设直线与圆相交于两点,点为圆上的一动点,求的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D2、A【解析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A3、D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D4、D【解析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【详解】,,,则.故选:D.5、C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.6、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A7、D【解析】由题设易知四边形为矩形,可得,结合已知条件有即可求椭圆C的离心率的取值范围.【详解】由椭圆的对称性知:,而,又,即四边形为矩形,所以,则且M在第一象限,整理得,所以,又即,综上,,整理得,所以.故选:D.【点睛】关键点点睛:由椭圆的对称性及矩形性质可得,由已知条件得到,进而得到椭圆参数的齐次式求离心率范围.8、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题9、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B10、C【解析】设出点C坐标,求出的重心并代入欧拉线方程,验证并排除部分选项,余下选项再由外心、垂心验证判断作答.【详解】设顶点的坐标为,则的重心坐标为,依题意,,整理得:,对于A,当时,,不满足题意,排除A;对于D,当时,,不满足题意,排除D;对于B,当时,,对于C,当时,,直线AB的斜率,线段AB中点,线段AB中垂线方程:,即,由解得:,于是得的外心,若点,则直线BC的斜率,线段BC中点,该点与点M确定直线斜率为,显然,即点M不在线段BC的中垂线上,不满足题意,排除B;若点,则直线BC的斜率,线段BC中点,线段BC中垂线方程为:,即,由解得,即点为的外心,并且在直线上,边AB上的高所在直线:,即,边BC上的高所在直线:,即,由解得:,则的垂心,此时有,即的垂心在直线上,选项C满足题意.故选:C【点睛】结论点睛:的三顶点,则的重心为.11、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C12、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:14、##【解析】先计算得到二面角的大小为60°,设二面角C-AB-O的大小为,则,计算得到答案.【详解】解:由题可得,,因为分别是的中点,所以,,又,所以平面因为,所以,所以二面角为,设二面角的大小为,即,则,在中,利用余弦定理得到:,故当时,取得最大值.故答案为:15、【解析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16、##【解析】首先求得的导数,由导数的几何意义可得切线的斜率.【详解】因为函数的导数为,所以可得在处的切线斜率,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.18、(1)(2)【解析】(1)根据是,的等比中项,且,,由求解;(2)由(1)得到,再利用错位相减法求解.【小问1详解】解:因为是,的等比中项,且,,所以,解得,,所以;【小问2详解】由(1)得,所以,则,两式相减得,,,所以.19、(1);(2).【解析】(1)求出圆的半径长,结合圆心坐标可得出圆的标准方程;(2)求出圆心到直线的距离,利用勾股定理可求得.小问1详解】解:圆的半径为,因此,圆的标准方程为.【小问2详解】解:圆心到直线的距离为,因此,.20、(1);(2).【解析】(1)根据导数的几何意义进行求解即可;(2)利用常变量分离法,通过构造新函数,由方程有两个不同的实数解问题,转化为两个函数的图象有两个交点问题,利用导数进行求解即可.【小问1详解】设曲线的切点坐标为,由,所以过该切点的切线的斜率为,因此该切线方程为:,因为直线与函数的图象相切,所以,因为直线与函数的图象相切,且函数过原点,所以曲线的切点为,于是有,即;【小问2详解】由可得:,当时,显然不成立,当时,由,设函数,,,当时,,单调递减,当时,,单调递减,当时,,单调递增,因此当时,函数有最小值,最小值为,而,当时,,函数图象如下图所示:方程有两个不同的实数解,转化为函数和函数的图象,在当时,有两个不同的交点,由图象可知:,故a的取值范围为.【点睛】关键点睛:利用常变量分离法,结合转化法进行求解是解题的关键.21、(1)(2)【解析】(1)先求出,由得到,得到不等式组,求出m的取值范围;(2)根据充分不必要条件得到是的真子集,分与两种情况进行求解,求得m的取值范围.【小问1详解】,解得:,故,因为,所以,故,解得:,所以m的取值范围是.【小问2详解】若“x∈B”是“x∈A”的充分不必要条件,则是的真子集,当时,,解得:,当时,需要满足:或,解得:综上:m取值范围是22、(1)(2)或(3)【解析】(1)解法一,根据题意设圆的标准方程为,进而待定系数法求解即可;解法二:由题知圆心在线段的垂直平分线上,进而结合题意得圆的圆心与半径,写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届黑龙江省鸡西市第一中学数学高三上期末质量跟踪监视模拟试题含解析
- 新疆维吾尔自治区吐鲁番市高昌区二中2025届高三语文第一学期期末复习检测模拟试题含解析
- 2025届山东省枣庄市第四十一中学生物高三第一学期期末考试试题含解析
- 四川省宜宾第三中学2025届高二上数学期末质量跟踪监视试题含解析
- 广东省东莞市第五高级中学2025届高二生物第一学期期末学业质量监测试题含解析
- 天津市和平区2025届高一上数学期末达标检测模拟试题含解析
- 2025届湖北省襄阳市重点中学生物高一上期末教学质量检测模拟试题含解析
- 重庆三十二中学2025届生物高一上期末复习检测模拟试题含解析
- 安徽省皖江联盟2025届数学高二上期末学业质量监测模拟试题含解析
- 株洲市重点中学2025届数学高二上期末达标检测模拟试题含解析
- 2024-2030年中国口含烟行业发展趋势及投资风险分析研究报告
- 人教版2024年七年级上册英语期中学业质量评价测试卷(含答案)
- 2024年甘肃省临夏州中考语文真题(含解析)
- 2024年山西省中考生物试题卷(含答案解析)
- 2023-2024学年北京市海淀区建华实验学校4-6班八年级(上)期中数学试卷【含解析】
- GB/T 23862-2024文物包装与运输规范
- 2024年江苏苏州市(12345)便民服务中心招聘座席代表人员(高频重点复习提升训练)共500题附带答案详解
- 九年级化学上册(沪教版2024)新教材解读课件
- 2024年宁夏石嘴山市科技馆招聘工作人员3人历年(高频重点复习提升训练)共500题附带答案详解
- 《快乐的一天》(教案)人音版(五线谱)音乐一年级上册
- 大国崛起之中国高铁课件讲解
评论
0/150
提交评论