![河南省名校大联考2025届数学高二上期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view8/M01/27/31/wKhkGWckaqyAB9uKAAIirUa_khA217.jpg)
![河南省名校大联考2025届数学高二上期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view8/M01/27/31/wKhkGWckaqyAB9uKAAIirUa_khA2172.jpg)
![河南省名校大联考2025届数学高二上期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view8/M01/27/31/wKhkGWckaqyAB9uKAAIirUa_khA2173.jpg)
![河南省名校大联考2025届数学高二上期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view8/M01/27/31/wKhkGWckaqyAB9uKAAIirUa_khA2174.jpg)
![河南省名校大联考2025届数学高二上期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view8/M01/27/31/wKhkGWckaqyAB9uKAAIirUa_khA2175.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省名校大联考2025届数学高二上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,42.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.3.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.114.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题5.我国古代数学论著中有如下叙述:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四.”思如下:一座7层塔共挂了254盏灯,且相邻两层下一层所挂灯数是上一层所挂灯数的2倍.下列结论不正确的是()A.底层塔共挂了128盏灯B.顶层塔共挂了2盏灯C.最下面3层塔所挂灯的总盏数比最上面3层塔所挂灯的总盏数多200D.最下面3层塔所挂灯的总盏数是最上面3层塔所挂灯的总盏数的16倍6.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.987.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.8.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到9.直线且的倾斜角为()A. B.C. D.10.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.811.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.3712.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为_______.14.已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.15.正方体,点分别是的中点,则异面直线与所成角的余弦值为___________.16.已知函数,则满足实数的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面ABCD是边长为2的菱形,,,且,E为PD的中点(1)求证:;(2)求二面角的大小;(3)在侧棱PC上是否存在点F,使得点F到平面AEC的距离为?若存在,求出的值;若不存在,请说明理由18.(12分)圆心为的圆经过点,,且圆心在上,(1)求圆的标准方程;(2)过点作直线交圆于且,求直线的方程.19.(12分)如图,四棱锥P-ABCD的底面是矩形,底面ABCD,,M为BC中点,且.(1)求BC;(2)求二面角A-PM-B的正弦值.20.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.21.(12分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;22.(10分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.2、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.3、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.4、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.5、C【解析】由题设易知是公比为2的等比数列,应用等比数列前n项和公式求,结合各选项的描述及等比数列通项公式、前n项和公式判断正误即可.【详解】从上往下记每层塔所挂灯的盏数为,则数列是公比为2的等比数列,且,解得,所以顶层塔共挂了2盏灯,B正确;底层塔共挂了盏灯,A正确最上面3层塔所挂灯总盏数为14,最下面3层塔所挂灯的总盏数为224,C不正确,D正确故选:C.6、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D7、D【解析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.8、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B9、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.10、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A11、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.12、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】应用点线距离公式求点线距离.【详解】由题设,点到距离为.故答案为:14、【解析】过点作于,过点作于,利用双曲线的定义以及勾股定理可求得,由已知可得,可得出关于、的齐次不等式,结合可求得的取值范围.【详解】过点作于,过点作于,因为,所以,又因为,所以,故,又因为,且,所以,因此,所以,又因为直线与圆有公共点,所以,故,即,则,所以,又因为双曲线的离心率,所以.故答案为:.15、【解析】以为坐标原点建立空间直角坐标系,根据异面直线所成角的向量求法可求得结果.【详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,设正方体棱长为,则,,,,,,,即异面直线与所成角的余弦值为.故答案为:.16、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1的讨论,当,解得当,不存在,当时,,解得,故x的范围为点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)存在;【解析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,用空间向量求解二面角;(3)设出F点坐标,用空间向量的点到平面距离公式进行求解.【小问1详解】证明:连接BD,设BD与AC交于点O,连接PO.因为,所以四棱锥中,底面ABCD是边长为2的菱形,则又,所以平面PBD,因为平面PBD,所以【小问2详解】因为,所以,所以由(1)知平面ABCD,以O为原点,,,的方向为x轴,y轴,z轴正方向,建立空间直角坐标系,则,,,,,,所以,,,设平面AEC的法向量,则,即,令,则平面ACD的法向量,,所以二面角为;【小问3详解】存在点F到平面AEC的距离为,理由如下:由(2)得,,设,则,所以点F到平面AEC的距离,解得,,所以18、(1);(2)或.【解析】(1)求出线段的垂直平分线方程,求出此直线与已知直线的交点坐标即为圆心坐标,再求得半径后可得圆的标准方程;(2)检验直线斜率不存在时是否满足题意,在斜率存在时设方程为,求得圆心到直线的距离,由勾股定理得弦长,由弦长为8得参数,得直线方程【详解】(1)由已知,中点坐标为,垂直平分线方程为则由解得,所以圆心,因此半径所以圆的标准方程(2)由可得圆心到直线的距离当直线斜率不存在时,其方程为,当直线斜率存在时,设其方程为,则,解得,此时其方程为,所以直线方程为或.【点睛】方法点睛:本题考查求圆的标准方程,考查直线与圆相交弦长.求弦长方法是几何法:即求出圆心到弦所在直线距离,由勾股定理求得弦长.求直线方程时注意检验直线斜率不存在的情形19、(1);(2).【解析】(1)根据给定条件推导证得,再借助直角三角形中锐角的正切列式求解作答.(2)由给定条件建立空间直角坐标系,借助空间向量求解面面角作答【小问1详解】连结BD,如图,因底面ABCD,且平面ABCD,则,又,,平面PBD,于是得平面PBD,又平面PBD,则,有,又,则有,有,则,解得,所以.【小问2详解】依题意,DA,DC,DP两两垂直,以点D为坐标原点建立如图所示的空间直角坐标系,由(1)知,,,,,,,,设平面AMP的法向量为,则,令,得,设平面BMP的法向量为,则,令,得,设二面角A-PM-B的平面角为,则,因此,,所以二面角A-PM-B的正弦值为.20、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为21、(1)(2)【解析】(1)由圆C的圆心在坐标原点,且过点,求得圆的半径,利用圆的标准方程,即可求解;(2)由点到直线的距离公式,求得圆心到直线l的距离为,进而得到点P到直线的距离的最小值为,得出答案.【详解】(1)由题意,圆C的圆心在坐标原点,且过点,所以圆C的半径为,所以圆C的方程为.(2)由题意,圆心到直线l的距离为,所以P到直线的距离的最小值为.【点睛】本题主要考查了圆标准方程的求解,以及直线与圆的位置关系的应用,其中解答中熟练应用直线与圆的位置关系合理转化是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.22、(1)双曲线方程为(2)满足条件的直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《CT胰腺炎性病变》课件
- 《产后病人的护理》课件
- 清明节品牌市场分析模板
- 探索管理学新境界
- 银行数字化转型路演模板
- 2025年高导热石墨膜项目合作计划书
- 小学感恩教师主题活动方案
- 扶贫搬迁申请书
- 辅导班申请书范文
- 事故申请书范文
- 20级大学物理(下)A卷期终试卷及答案解析-南京理工大学
- 自动化生产线运行与维护完整版课件(全)
- 人教版八年级人文地理下册知识点整理(2021版)
- 地震应急预案及应急演练脚本
- 中国经济转型导论-政府与市场的关系课件
- 二十四节气文化融入幼儿园食育的有效途径
- 统计过程控制SPC培训资料
- 食品经营操作流程图
- 新视野大学英语读写教程 第三版 Book 2 unit 8 教案 讲稿
- 小学生必背古诗词80首硬笔书法字帖
- X52K铣床参数
评论
0/150
提交评论