云南省大理州体育中学2025届数学高一上期末预测试题含解析_第1页
云南省大理州体育中学2025届数学高一上期末预测试题含解析_第2页
云南省大理州体育中学2025届数学高一上期末预测试题含解析_第3页
云南省大理州体育中学2025届数学高一上期末预测试题含解析_第4页
云南省大理州体育中学2025届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省大理州体育中学2025届数学高一上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的大小关系为()A. B.C. D.2.已知命题,,则命题否定为()A., B.,C., D.,3.设向量,,,则A. B.C. D.4.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③5.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.6.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.7.已知,则的大小关系为A. B.C. D.8.已知角终边经过点,若,则()A. B.C. D.9.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2012+b2013的值为()A.0B.1C.-1D.±110.已知,,则下列不等式正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数(是常数)的图象经过点,那么________12.如图,矩形是平面图形斜二测画法的直观图,且该直观图的面积为,则平面图形的面积为______.13.已知函数满足,若函数与图像的交点为,,,,,则__________14.函数,的图象恒过定点P,则P点的坐标是_____.15.若,则____16.已知点,,在函数的图象上,如图,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且.(1)求的值;(2)求.18.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.19.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.20.化简下列各式:(1);(2).21.2021年7月24日,我国运动员杨倩以环的成绩获得东京奥运会射击女子米气步枪项目金牌,为中国代表团摘下本届奥运会的首枚金牌,也让《义勇军进行曲》成为第一首奏响在本届奥运会赛场上的国歌.在决赛赛场上,第二阶段前轮(第枪,每轮枪)是选手淘汰阶段,后轮(第枪,每轮枪)进入奖牌争夺阶段.杨倩在第二阶段成绩如下:轮数枪数得分(1)计算第二阶段前4轮和后3轮得分的均值,试根据此结果分析该选手在淘汰阶段和奖牌争夺阶段的发挥状态哪个更好;(2)记后轮得分的均值为,标准差为,若数据落在内记为正常,否则不正常﹐请根据此结论判断该选手最后一枪在后轮个数据中是否为正常发挥?(参考数据:,计算结果精确到)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先对三个数化简,然后利用指数函数的单调性判断即可【详解】,,,因为在上为增函数,且,所以,所以,故选:B2、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.3、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题4、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C5、D【解析】,又,故选D考点:扇形弧长公式6、C【解析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【点睛】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题7、D【解析】,且,,,故选D.8、C【解析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,又由,根据三角函数的定义,可得且,解得.故选:C.9、B【解析】根据题意,由{a,,1}={a2,a+b,0}可得a=0或=0,又由的意义,则a≠0,必有=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B点睛:集合的三要素是:确定性、互异性和无序性,集合的表示常用的有三种形式:列举法,描述法,Venn图法.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.10、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:12、【解析】由题意可知,该几何体的直观图面积,可通过,带入即可求解出该平面图形的面积.【详解】解:由题意,直观图的面积为,因为直观图和原图面积之间的关系为,所以原图形的面积是故答案为:.13、4【解析】函数f(x)(x∈R)满足,∴f(x)的图象关于点(1,0)对称,而函数的图象也关于点(1,0)对称,∴函数与图像的交点也关于点(1,0)对称,∴,∴故答案为:4点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称.14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、##0.25【解析】运用同角三角函数商数关系式,把弦化切代入即可求解.【详解】,故答案为:.16、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先根据,且,求出,则可求,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)∵且,∴,∴,∴;(2)∵,∴,又∵,∴,,所以.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.本题考查运算求解能力,是中档题.18、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1);(2).【解析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【详解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且为锐角,则.(2)由(1)知,,即,=,所以,=,且,则,所以,则,即函数的值域为.【点睛】本题考查平行向量的坐标的关系,同角基本关系及向量数量积的计算公式,考查了利用正弦函数的图象求最值及二倍角的余弦公式,两角差的正余弦公式等,属于综合题20、(1)0(2)1【解析】(1)由诱导公式化简计算;(2)由诱导公式化简即可得解【小问1详解】;【小问2详解】21、(1),;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论