河北省博野县2025届数学高一上期末综合测试模拟试题含解析_第1页
河北省博野县2025届数学高一上期末综合测试模拟试题含解析_第2页
河北省博野县2025届数学高一上期末综合测试模拟试题含解析_第3页
河北省博野县2025届数学高一上期末综合测试模拟试题含解析_第4页
河北省博野县2025届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省博野县2025届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数是函数(且)的反函数,且,则()A. B.C. D.2.若直线经过两点,,且倾斜角为,则的值为()A.2 B.1C. D.3.下列函数中,最小值是的是()A. B.C. D.4.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B.C. D.5.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则6.函数的定义域是()A.(-1,1) B.C.(0,1) D.7.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.8.若两直线与平行,则它们之间的距离为A. B.C. D.9.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.10.若集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.12.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.13.如图,,,是三个边长为1的等边三角形,且有一条边在同一直线上,边上有2个不同的点,则__________14.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调15.函数的部分图象如图所示.则函数的解析式为______16.已知幂函数在为增函数,则实数的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?18.设,且.(1)求的值;(2)求在区间上的最大值.19.已知函数在区间上有最大值,最小值,设.(1)求值;(2)若不等式在时恒成立,求实数的取值范围.20.如图,四边形是矩形,平面,平面,,(1)证明:平面平面;(2)求三棱锥的体积21.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.2、A【解析】直线经过两点,,且倾斜角为,则故答案为A.3、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.4、A【解析】利用向量模的坐标求法可得,再利用向量数量积求夹角即可求解.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选:A.【点睛】本题考查了利用向量数量积求夹角、向量模的坐标求法,属于基础题.5、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.6、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B7、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角8、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,9、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决10、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:12、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)13、9【解析】以为原点建立平面直角坐标系,依题意可设三个点坐标分别为,故.【点睛】本题主要考查向量的加法、向量的数量积运算;考查平面几何坐标法的思想方法.由于题目给定三个全等的三角形,而的位置不确定,故考虑用坐标法来解决.在利用坐标法解题时,首先要选择合适的位置建立平面直角坐标系,建立后用坐标表示点的位置,最后根据题目的要求计算结果.14、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.15、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.16、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.18、(1);(2)2【解析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域19、(1);(2).【解析】(1)利用二次函数单调性进行求解即可;(2)利用换元法、构造函数法,结合二次函数的性质进行求解即可.【小问1详解】当时,函数的对称轴为:,因此函数当时,单调递增,故所以;【小问2详解】由(1)知,不等式,可化为:即,令,,令,.20、(1)证明见解析(2)1【解析】(1)由平面,平面,得到,利用线面平行的判定定理得到平面,平面,然后利用面面平行的判定定理证明;(2)由平面,得到点到平面的距离,然后利用求解【小问1详解】证明:平面,平面,,又平面,平面,平面,在矩形中,,且平面,平面,平面,又,∴平面平面【小问2详解】平面,∴点到平面的距离为,∵四边形矩形,,,,21、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论