版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞外国语学校2025届高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.12.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.3.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.44.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.165.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.6.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.117.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.8.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.曲线在处的切线的倾斜角是()A. B.C. D.10.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.11.设数列、都是等差数列,若,则等于()A. B.C. D.12.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,,则数列的公比为___________.14.已知,满足约束条件则的最小值为__________15.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.18.(12分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积19.(12分)已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值(1)求椭圆的方程;(2)求面积的最大值20.(12分)已知等差数列满足;正项等比数列满足,,(1)求数列,的通项公式;(2)数列满足,的前n项和为,求的最大值.21.(12分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长22.(10分)在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B2、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.3、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C4、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A5、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质6、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.7、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.8、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D9、D【解析】求出函数的导数,再求出并借助导数的几何意义求解作答.【详解】由求导得:,则有,因此,曲线在处的切线的斜率为,所以曲线在处切线的倾斜角是.故选:D10、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.11、A【解析】设等差数列的公差为,根据数列是等差数列可求得,由此可得出,进而可求得所求代数式的值.【详解】设等差数列的公差为,即,由于数列也为等差数列,则,可得,即,可得,即,解得,所以,数列为常数列,对任意的,,因此,.故选:A.【点睛】关键点点睛:本题考查等差数列基本量的求解,通过等差数列定义列等式求解公差是解题的关键,另外,在求解有关等差数列基本问题时,可充分利用等差数列的定义以及等差中项法来求解.12、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.14、2【解析】由题意,根据约束条件作出可行域图,如图所示,将目标函数转化为,作出其平行直线,并将其在可行域内平行上下移动,当移到顶点时,在轴上的截距最小,即.15、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:16、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题18、(1)(2)【解析】(1)根据题意建立关于的方程,解得的值即可.(2)联列方程组并消元,韦达定理整体思想求的长,再求点到直线的距离,进而求面积.【小问1详解】由题意可得,,则,因为,所以,解得,故抛物线的方程为【小问2详解】由(1)可知,则点到直线的距离联立,整理得设,,则,从而因为直线过抛物线的焦点,所以故的面积为19、(1)(2)【解析】(1)由抛物线焦点可得c,再根据离心率可得a,即得b;(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值【详解】试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积S=∴当t=0,△OAB面积的最大值为.20、(1),(2)8【解析】(1)利用已知的关系把替换成,再把两式作差后整理即得通项公式,的通项公式可由已知条件建立基本量的方程求解.(2)由的通项公式可判断,,,当时,所有正项的和即为的最大项的值.小问1详解】,,两式相减得所以,又也满足,故;设等比数列的公比为,由得,即,因为,即,,(负值舍去),所以【小问2详解】由题意,,则,,,且当时,所以的最大值是.21、(1)(2)或【解析】(1)建立空间直角坐标系,利用向量法求得直线与所成角的余弦值.(2)结合直线与平面所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版基础设施建设模板工程合同
- 二零二五年度旅游度假公司股权转让与目的地营销协议3篇
- 二零二五年度建筑防水工程防水材料研发与市场推广合同3篇
- 二零二五年度新型建筑工具租赁合同范本3篇
- 二零二五年度招标采购项目管理合同3篇
- 二零二五年度旅游项目保荐人尽职调查与服务质量合同
- 二零二五年度家禽屠宰加工一体化订购合同2篇
- 二零二五年度担保公司商品房交易风险分担协议3篇
- 2024版国际版权交易合同
- 微结构增强材料电磁兼容性
- 散状料上料安全操作规程模版(3篇)
- 2025户外品牌探路者线上新媒体运营方案
- 《个案工作介入涉罪未成年人的家庭帮教研究》
- 2024-2025学年人教版地理七年级上册期末复习训练题(含答案)
- 2024年中学总务处工作总结
- 统编版(2024新版)七年级上册道德与法治期末综合测试卷(含答案)
- 教育部中国特色学徒制课题:基于中国特色学徒制的新形态教材建设与应用研究
- 2023年黑龙江日报报业集团招聘工作人员考试真题
- 安全管理人员安全培训教材
- 工程施工扬尘防治教育培训
- 影视后期制作团队薪酬激励方案
评论
0/150
提交评论