云南省墨江县民族学校2025届高一上数学期末质量检测试题含解析_第1页
云南省墨江县民族学校2025届高一上数学期末质量检测试题含解析_第2页
云南省墨江县民族学校2025届高一上数学期末质量检测试题含解析_第3页
云南省墨江县民族学校2025届高一上数学期末质量检测试题含解析_第4页
云南省墨江县民族学校2025届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省墨江县民族学校2025届高一上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.设函数f(x)=2-x,x≤01,x>0,则满足A.(-∞,-1]C.(-1,0) D.(-3.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,04.设实数满足,函数的最小值为()A. B.C. D.65.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.6.函数的零点所在区间为A. B.C. D.7.设为大于1的正数,且,则,,中最小的是A. B.C. D.三个数相等8.已知,都是正数,则下列命题为真命题的是()A.如果积等于定值,那么当时,和有最大值B.如果和等于定值,那么当时,积有最小值C.如果积等于定值,那么当时,和有最小值D.如果和等于定值,那么当时,积有最大值9.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.10.已知,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.12.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.13.函数的零点是___________.14.已知幂函数在上为减函数,则实数_______15.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________16.已知函数(1)当时,求的值域;(2)若,且,求的值;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求,;(2)若,求实数a的取值范围.18.已知函数是定义在上的奇函数,且时,.(1)求函数的解析式;(2)若任意恒成立,求实数的取值范围.19.已知直线,无论为何实数,直线恒过一定点.(1)求点的坐标;(2)若直线过点,且与轴正半轴、轴正半轴围成的三角形面积为4,求直线的方程.20.已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围21.某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:(1)求频率分布直方图中的值;(2)求20位同学成绩的平均分;(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.2、D【解析】画出函数的图象,利用函数的单调性列出不等式转化求解即可【详解】解:函数f(x)=2满足f(x+1)<f(2x),可得2x<0≤x+1或2x<x+1⩽0,解得x∈(-故选:D3、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性4、A【解析】将函数变形为,再根据基本不等式求解即可得答案.详解】解:由题意,所以,所以,当且仅当,即时等号成立,所以函数的最小值为.故选:A【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5、B【解析】,则,则的最大值是2,故选B.6、C【解析】要判断函数的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间上零点,则与异号进行判断【详解】,,故函数的零点必落在区间故选C【点睛】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间上与异号,则函数在区间上有零点7、C【解析】令,则,所以,,对以上三式两边同时乘方,则,,,显然最小,故选C.8、D【解析】根据基本不等式计算求出和的最小值与积的最大值,进而依次判断选项即可.【详解】由题意知,,A:,则,当且仅当时取到等号,所以有最小值,故A错误;B:,则,当且仅当时取到等号,所以有最大值,故B错误;C:,则,当且仅当时取到等号,所以有最小值,故C错误;D:,则,有,当且仅当时取到等号,所以有最大值,故D正确;故选:D9、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B10、A【解析】说明由可得得到,通过特例说明无法从得到,从而得到是的充分不必要条件.【详解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.12、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:13、和【解析】令y=0,直接解出零点.【详解】令y=0,即,解得:和故答案为:和【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解14、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关15、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:316、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由交集和并集运算直接求解即可.(2)由,则【详解】(1)由集合,则,(2)若,则,所以18、(1);(2).【解析】(1)由奇函数的性质可得出,设,由奇函数的性质可得出可得出的表达式,综合可得出结果;(2)分析可知函数为上的增函数,由原不等式变形可得出,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】(1)因为函数是定义在上的奇函数,所以,且.设,则,所以,所以;(2)因为对任意恒成立,所以,又是定义在上的奇函数,所以,作出函数的图象如下图所示:由图可知,在上单调递增,所以,即恒成立,令,,,则函数在上单调递增,所以,所以,即实数的取值范围.19、(1)(2)【解析】(1)将直线变形为,令,即可解出定点坐标;(2)可设直线为,根据题意可得到面积为,进而解出参数值解析:(1)将直线的方程整理为:,解方程组,得所以定点的坐标为.(2)由题意直线的斜率存在,设为,于是,即,令,得;令,得,于是.解得.所以直线的方程为,即.20、(1),;(2)【解析】:(1)首先由两角和的正弦公式可得,进而即可求出的取值范围;接下来对已知的函数利用进行表示;对于(2),首先由的取值范围,求出的取值范围,再对已知进行恒等变形可得在区间上恒成立,据此即可得到关于的不等式,解不等式即可求出的取值范围.试题解析:(1),因为,所以,其中,即,.(2)由(1)知,当时,,又在区间上单调递增,所以,从而,要使不等式在区间上恒成立,只要,解得:.点晴:本题考查是求函数的解析式及不等式恒成立问题.(1)首先,可求出的取值范围;接下来对已知的函数利用进行表示;(2)先求二次函数,再解不等式.21、(1);(2);(3)第一四分位数为70.0;第80分位数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论