江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题含解析_第1页
江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题含解析_第2页
江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题含解析_第3页
江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题含解析_第4页
江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省如皋市2025届高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南2.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.3.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.4.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.5.若动点满足方程,则动点P的轨迹方程为()A. B.C. D.6.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.7.()A. B.C. D.8.已知椭圆的左右焦点分别为,直线与C相交于M,N两点(其中M在第一象限),若M,,N,四点共圆,且直线倾斜角不小于,则椭圆C的离心率e的取值范围是()A. B.C. D.9.已知直线与垂直,则为()A.2 B.C.-2 D.10.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.4111.已知且,则下列不等式恒成立的是A. B.C. D.12.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,,,则公比________.14.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________15.已知点,,其中,若线段的中点坐标为,则直线的方程为________16.过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.18.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.19.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和20.(12分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长21.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标22.(10分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D2、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.3、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.4、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.5、A【解析】根据方程可以利用几何意义得到动点P的轨迹方程是以与为焦点的椭圆方程,从而求出轨迹方程.【详解】由题意得:到与的距离之和为8,且8>4,故动点P的轨迹方程是以与为焦点的椭圆方程,故,,所以,,所以椭圆方程为.故选:A6、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.7、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.8、B【解析】设椭圆的半焦距为c,由椭圆的中心对称性和圆的性质得以为直径的圆与椭圆C有公共点,则有以,再根据直线倾斜角不小于得,由椭圆的定义得,由此可求得椭圆离心率的范围.【详解】解:设椭圆的半焦距为c,由椭圆的中心对称性和M,,N,四点共圆得,四边形必为一个矩形,即以为直径的圆与椭圆C有公共点,所以,所以,所以,因为直线倾斜角不小于,所以直线倾斜角不小于,所以,化简得,,因为,所以,所以,,又,因为,所以,所以,所以,所以.故选:B.9、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.10、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.11、C【解析】∵且,∴∴选C12、C【解析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列的性质求解即可.【详解】因为等比数列中,故,又,故,故.故答案为:【点睛】本题主要考查了等比数列的性质运用,需要注意分析项与公比的正负,属于基础题.14、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.15、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.16、【解析】设,,,,分别代入双曲线方程,两式相减,化简可得:,结合中点坐标公式求得直线的斜率,再利用点斜式即可求直线方程【详解】过点的直线与该双曲线交于,两点,设,,,,,两式相减可得:,因为为的中点,,,,则,所以直线的方程为,即为故答案为:【点睛】方法点睛:对于有关弦中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.18、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,设联立方程,得,整理得,则.又P是线段AB的中点,∴,即故l19、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以20、(1)(2)或,【解析】(1)设圆心,根据圆心在直线上及圆过两点建立方程求解即可;(2)分切线的斜率存在与不存在分类讨论,利用圆心到切线的距离等于半径求解,再根据圆的切线的几何性质求弦长即可.【小问1详解】设圆心,因为圆心C在直线上,所以①因为A,B是圆上的两点,所以,所以,即②联立①②,解得,所以圆C的半径,所以圆C的标准方程为【小问2详解】若过点P的切线斜率不存在,则切线方程为若过点P的切线斜率存在,设为k,则切线方程为,即由,解得,所以切线方程为综上,过点P的圆C的切线方程为或设PC与DE交于点F,因为,,PC垂直平分DE,所以,所以所以21、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.22、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到女学生的人数X可能为0,1,2,3,分别求得其概率,列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论