版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省武胜中学高一数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,且,则A. B.C. D.2.已知函数f(x)=3x A. B.C. D.3.已知集合,集合,则下列结论正确的是A. B.C. D.4.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.5.已知是定义在R上的奇函数,在区间上为增函数,则不等式的解集为()A. B.C. D.6.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:)A.6天 B.7天C.8天 D.9天7.函数的图像的一个对称中心是A. B.C. D.8.下列函数中,与函数有相同图象的一个是A. B.C. D.9.已知函数是定义在上的偶函数,且在上单调递增,若,则不等式解集为A. B.C. D.10.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(且)只有一个零点,则实数的取值范围为______12.函数在上的最小值为__________.13.已知,且是第三象限角,则_____;_____14.已知,且,若不等式恒成立,则实数的最大值是__________.15.若,,则________.16.已知圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的高为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=m(1)若m=1,求fx(2)若方程fx=0有两个实数根x1,x2,且x18.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界的有界函数,求实数a的取值范围19.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.20.已知为上的奇函数,为上的偶函数,且满足,其中为自然对数的底数.(1)求函数和的解析式;(2)若不等式在恒成立,求实数的取值范围.21.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围2、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B3、B【解析】由题意得,结合各选项知B正确.选B4、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B5、C【解析】由奇函数知,再结合单调性及得,解不等式即可.【详解】由题意知:,又在区间上为增函数,当时,,当时,,由可得,解得.故选:C.6、B【解析】根据题意将给出的数据代入公式即可计算出结果【详解】因为,,,所以可以得到,由题意可知,所以至少需要7天,累计感染病例数增加至的4倍故选:B7、C【解析】令,得,所以函数的图像的对称中心是,然后赋值即可【详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【点睛】本题主要考查正切函数的对称性,属基础题8、B【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.9、B【解析】,又函数是定义在上的偶函数,且在上单调递增,所以,解得.考点:偶函数的性质.【思路点睛】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.根据函数奇偶性可得,再根据函数的单调性,可得;然后再解不等式即可求出结果10、A【解析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解12、【解析】正切函数在给定定义域内单调递增,则函数的最小值为.13、①.##②.##0.96【解析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【详解】因,且是第三象限角,则,所以,.故答案为:;14、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:16、【解析】设此圆的底面半径为,高为,母线为,根据底面圆周长等于展开扇形的弧长,建立关系式解出,再根据勾股定理得,即得此圆锥高的值【详解】设此圆的底面半径为,高为,母线为,因为圆锥的侧面展开图是一个半径为,圆心角为的扇形,所以,得,解之得,因此,此圆锥的高,故答案为:【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x(2)mm<0或m>【解析】(1)根据题意,解不等式x2(2)由题知m≠0Δ=16m2【小问1详解】解:当m=1时,f(x)=x所以f(x)=x2+4x+3=所以fx≤0的解集为【小问2详解】解:因为方程fx=0有两个实数根x1所以m≠0Δ=16m2-12m≥0所以x1所以x12+x2综上,m的取值范围为mm<0或m>18、(1)值域为(3,+∞);不是有界函数,详见解析(2)【解析】(1)当a=1时,f(x)=1+因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M成立,所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,设2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,设1≤t1<t2,h(t1)-h(t2)=>0,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1]19、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.20、(1),;(2).【解析】(1)解方程组即得解;(2)等价于不等式在恒成立,再利用基本不等式求解.【小问1详解】解:由,得,因为为上的奇函数,为上的偶函数,所以,由,解得,.【小问2详解】解:因为为上的奇函数,所以转化为,因为在上都为增函数,所以在上为增函数,所以在恒成立,即在恒成立,所以在恒成立,因为,当且仅当,即时取等号.所以,所以实数的取值范围为.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度果园广告宣传与推广合同3篇
- 2024年研发合作合同详细规定
- 2024年综合虫害管理合同
- 2024年版货物买卖合同标的详细描述
- 2025年度新型泥工装修工程劳务合同范本3篇
- 2024年民营企业股权转让合同范本一
- 2025年度信用卡透支反担保风险控制与处理合同3篇
- 2025版旧房屋买卖及房屋修缮合同3篇
- 二零二五年度三人合作开展教育培训合同3篇
- 2025版高端写字楼全天候保洁及设施维护服务合同3篇
- 2025年1月八省联考河南新高考物理试卷真题(含答案详解)
- 物业管理服务人员配备及岗位职责
- 郑州2024年河南郑州市惠济区事业单位80人笔试历年参考题库频考点试题附带答案详解
- 深静脉血栓的手术预防
- 【9道期末】安徽省合肥市庐阳区2023-2024学年九年级上学期期末道德与法治试题
- 腹腔镜全胃切除手术配合
- 安徽省芜湖市2023-2024学年高一上学期期末考试 物理 含解析
- 担保公司员工守则(共18页)
- 录音艺术教学大纲
- 初中化学教学中的教学瓶颈及解决策略探讨
- 单层钢结构厂房施工方案(完整版)
评论
0/150
提交评论