湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题含解析_第1页
湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题含解析_第2页
湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题含解析_第3页
湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题含解析_第4页
湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市雅礼书院中学2025届高一数学第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.2.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.3.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.4.下列函数中既是奇函数又在定义域上是单调递增函数的是()A. B.C. D.5.已知,则的值是A.0 B.–1C.1 D.26.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限7.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个8.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④9.某几何体的三视图如图所示,则它的体积是A.B.C.D.10.已知角终边经过点,且,则的值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.经过点作圆的切线,则切线的方程为__________13.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.14.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______15.命题“,使关于的方程有实数解”的否定是_________.16.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解不等式;(2)设,若,,都有,求实数a的取值范围.18.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.19.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值20.已知角的顶点在坐标原点,始边与轴非负半轴重合,终边经过点(1)求,;(2)求的值21.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.2、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.3、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C4、D【解析】结合初等函数的奇偶性和单调性可排除选项;再根据奇偶性定义和复合函数单调性的判断方法可证得正确.【详解】对A,∵是奇函数,在(一∞,0)和(0,+∞)上是单调递增函数,在定义域上不是递增函数,可知A错误;对B,不是奇函数,可知B错误;对C,不是单调递增函数,可知C错误;对D,,则为奇函数;当时,单调递增,由复合函数单调性可知在上单调递增,根据奇函数对称性,可知在上单调递增,则D正确.故选:D5、A【解析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.6、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题7、A【解析】对于①:利用棱台的定义进行判断;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.即可判断;对于③:举反例:底面的菱形,各侧面都是正方形的四棱柱不是正方体.即可判断;对于④:利用圆锥的性质直接判断.【详解】对于①:棱台是棱锥过侧棱上一点作底面的平行平面分割而得到的.而两个面平行且相似,其余各面都是梯形的多面体中,把梯形的腰延长后,有可能不交于一点,就不是棱台.故①错误;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.故②错误;对于③:各侧面都是正方形的四棱柱中,如果底面的菱形,一定不是正方体.故③错误;对于④:圆锥的轴截面是等腰三角形.是正确的.故④正确.故选:A8、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D9、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.10、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.12、【解析】点在圆上,由,则切线斜率为2,由点斜式写出直线方程.【详解】因为点在圆上,所以,因此切线斜率为2,故切线方程为,整理得故答案为:13、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角14、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.15、,关于的方程无实数解【解析】直接利用特称命题的否定为全称命题求解即可.【详解】因为特称命题的否定为全称命题,否定特称命题是,既要否定结论,又要改变量词,所以命题“,使关于的方程有实数解”的否定为:“,关于的方程无实数解”.故答案为:,关于的方程无实数解16、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由同角关系原不等式可化为,化简可得,结合正弦函数可求其解集,(2)由条件可得在上的最大值小于或等于在上的最小值,利用单调性求的最大值,利用换元法,通过分类讨论求的最小值,由此列不等式求实数a的取值范围.【小问1详解】由得,,当时,,由,而,故解得,所以的解集为,.【小问2详解】由题意可知在上的最大值小于或等于在上的最小值.因为在上单调递减,所以在上的值域为.则恒成立,令,于是在恒成立.当即时,在上单调递增,则只需,即,此时恒成立,所以;当即时,在上单调递减,则只需,即,不满足,舍去;当即时,只需,解得,而,所以.综上所述,实数a的取值范围为.18、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2详解】设.因为,即,所以当时,即时,取得最小值,值为;当时,即时,取得最大值,值为.19、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用20、(1)(2)1【解析】(1)根据三角函数的定义,计算即可得答案.(2)根据诱导公式,整理化简,代入,的值,即可得答案.【小问1详解】因为角终边经过点,所以,【小问2详解】原式21、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论