江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题含解析_第1页
江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题含解析_第2页
江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题含解析_第3页
江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题含解析_第4页
江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市平江中学2025届数学高一上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.2.函数的零点所在区间为:()A. B.C. D.3.圆过点的切线方程是()A. B.C. D.4.设函数的部分图象如图,则A.B.C.D.5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.6.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.7.已知集合,集合为整数集,则A. B.C. D.8.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则()A.0 B.1C.7 D.89.已知原点到直线的距离为1,圆与直线相切,则满足条件的直线有A.1条 B.2条C.3条 D.4条10.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm3二、填空题:本大题共6小题,每小题5分,共30分。11.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.12.已知函数的图象恒过点P,若点P在角的终边上,则_________13.已知定义在区间上的奇函数满足:,且当时,,则____________.14.已知函数,,若关于x的方程()恰好有6个不同的实数根,则实数λ的取值范围为_______.15.函数在上是x的减函数,则实数a的取值范围是______16.已知指数函数(且)在区间上的最大值是最小值的2倍,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知由方程kx2-8x+16=0的根组成的集合A只有一个元素,试求实数k的值18.已知函数(1)求函数的对称中心;(2)当时,求函数的值域19.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间20.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?21.已知函数,其中.(1)求的定义域;(2)当时,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等2、C【解析】利用函数的单调性及零点存在定理即得.【详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.3、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.4、A【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论【详解】由图象知,,则,所以,即,由五点对应法,得,即,即,故选A【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题.5、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化6、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.7、A【解析】,选A.【考点定位】集合的基本运算.8、D【解析】根据函数的新定义求解即可.【详解】由题意可知4-(-4)=8.故选:D.9、C【解析】由已知,直线满足到原点的距离为,到点的距离为,满足条件的直线即为圆和圆的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.考点:相离两圆的公切线10、B【解析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)∴该几何体的体积V=6×6×3﹣=100故选B考点:由三视图求面积、体积二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】利用射影定理求得,结合图象判断出的大小关系.【详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;12、【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【详解】易知恒过点,即,因为点在角的终边上,所以,所以,,所以,故答案为:.13、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.14、【解析】令,则方程转化为,可知可能有个不同解,二次函数可能有个不同解,由恰好有6个不同的实数根,可得有2个不同的实数根,有3个不同的实数根,则,然后根据,,分3种情况讨论即可得答案.【详解】解:令,则方程转化为,画出的图象,如图可知可能有个不同解,二次函数可能有个不同解,因为恰好有6个不同的实数根,所以有2个不同的实数根,有3个不同的实数根,则,因为,解得,,解得,所以,,每个方程有且仅有两个不相等的实数解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,综上,实数λ的取值范围为.故答案为:.15、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.16、或2【解析】先讨论范围确定的单调性,再分别进行求解.【详解】①当时,,得;②当时,,得,故或2故答案为:或2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、k=0或1.【解析】讨论当k=0时和当k≠0时,两种情况,其中当k≠0时,只需Δ=64-64k=0即可.试题解析:当k=0时,原方程变为-8x+16=0,所以x=2,此时集合A中只有一个元素2.当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根,需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A中只有一个元素4.综上可知k=0或1.18、(1)(2)【解析】(1)化简函数,结合三角函数的图象与性质,即可求解;(2)由,可得,结合三角函数的图象与性质,即可求解;【小问1详解】解:由题意,函数,令,解得,所以函数的对称中心为.【小问2详解】解:因为,可得,当时,即时,可得;当时,即时,可得,所以函数的值域为19、(1)(2)【解析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以,,解得,所以函数的单调递增区间为20、(1)(2)(3)4人【解析】(1)根据频率和为1,求出的值;(2)根据频率分布直方图,计算平均数即可(3)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;【小问1详解】解:因为直方图中的各个矩形的面积之和为1,所以有,解得;【小问2详解】解:根据频率分布直方图,计算平均数为【小问3详解】解:由直方图知,三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论