版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市2025届高二上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.2.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.3.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.24.已知函数,则满足不等式的的取值范围是()A. B.C. D.5.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.7.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数8.已知向量,,则以下说法不正确的是()A. B.C. D.9.据有关文献记载:我国古代一座层塔共挂了盏灯,且相邻两层中的下一层灯数比上一层灯数都多为常数盏,底层的灯数是顶层的倍,则塔的底层共有灯()A.盏 B.盏C.盏 D.盏10.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.11.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.12.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁二、填空题:本题共4小题,每小题5分,共20分。13.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______14.已知AB为圆O:的直径,点P为椭圆上一动点,则的最小值为______15.命题“存在x∈R,使得x2+2x+5=0”的否定是16.某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,抛物线上的点的横坐标为1,且.(1)求抛物线的方程;(2)过焦点作两条相互垂直的直线(斜率均存在),分别与抛物线交于、和、四点,求四边形面积的最小值.18.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围19.(12分)如图,四棱台的底面为正方形,面,(1)求证:平面;(2)若平面平面,求直线m与平面所成角的正弦值20.(12分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.21.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.22.(10分)已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.2、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D3、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.4、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A5、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.6、C【解析】先求的平方后再求解即可.【详解】,故,故选:C7、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.8、C【解析】可根据已知的和的坐标,通过计算向量数量积、向量的模,即可做出判断.【详解】因为向量,,所以,故,所以选项A正确;,,所以,故选项B正确;,所以,故选项C错误;,所以,,故,所以选项D正确.故选:C.9、C【解析】根据给定条件利用等差数列前n项和公式列式计算即可作答.【详解】依题意,层塔从上层到下层挂灯盏数依次排成一列可得等差数列,,于是得,解得,,所以塔的底层共有灯盏.故选:C10、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.11、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.12、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:214、2【解析】方法一:通过对称性取特殊位置,设出P的坐标,利用向量的数量积转化求解最小值即可方法二:利用向量的数量积,转化为向量的和与差的平方,通过圆的特殊性,转化求解即可【详解】解:方法一:依据对称性,不妨设直径AB在x轴上,x,,,从而故答案为2方法二:,而,则答案2故答案为2【点睛】本题考查直线与圆的位置关系、椭圆方程的几何性质考查转化思想以及计算能力15、对任何x∈R,都有x2+2x+5≠0【解析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠016、150【解析】根据考试的成绩X服从正态分布.得到考试的成绩X的正太密度曲线关于对称,根据,得到,根据频率乘以样本容量得到这个分数段上的人数【详解】由题意,考试的成绩X服从正态分布考试的成绩X的正太密度曲线关于对称,,,,该市成绩在140分以上的人数为故答案为:150三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解析】(1)根据抛物线的定义求出,即可得到抛物线方程;(2)设直线的方程为:,、,则直线的方程为:,联立直线与抛物线方程,消元、列出韦达定理,再根据弦长公式表示出,同理可得,则四边形的面积,最后利用基本不等式计算可得;【小问1详解】解:由已知知:,解得,故抛物线的方程为:.【小问2详解】解:由(1)知:,设直线方程为:,、,则直线的方程为:,联立得,则,所以,,∴,同理可得,∴四边形的面积,当且仅当,即时等号成立,∴四边形面积的最小值为2.18、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.19、(1)证明见解析;(2).【解析】(1):连结交交于点O,连结,,通过四棱台的性质以及给定长度证明,从而证出,利用线面平行的判定定理可证明面;(2)利用线面平行的性质定理以及基本事实可证明,即求与平面所成角的正弦值;通过条件以及面面垂直的判定定理可证明面面,则为与平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【详解】(1)证明:连结交交于点O,连结,,由多面体为四棱台可知四点共面,且面面,面面,面面,∴,∵和均为正方形,,∴,所以为平行四边形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直线m与平面所成角可转化为求与平面所成角,∵和均为正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,设O在面的投影为M,则,∴为与平面所成角,由,可得,又∵,∴∴,直线m与平面所成角的正弦值为.【点睛】思路点睛:(1)找两个平面的交线,可通过两个平面的交点找到,也可利用线面平行的性质找和交线的平行直线;(2)求直线和平面所成角,过直线上一点做平面的垂线,则垂足和斜足连线与直线所成角即为直线和平面所成角.20、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【小问1详解】由题意,点椭圆上,有,解得故椭圆C的方程为.【小问2详解】当直线l的斜率不存在时,显然不符;当直线l的斜率存在时,设直线l为:联立方程得:由,设,有又由直线AM:,令x=-4得,将代入得:,同理得:.很明显,且,注意到,,而,故所以.【点睛】本题考查求椭圆的方程,解题关键是利用离心率与椭圆上的点,找到关于a,b,c的等量关系求解a与b.本题中直线方程代入椭圆方程整理后应用韦达定理求出,.表示出,,然后转化为相应的比值关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题21、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精密不锈钢管购买合同
- 物业管理服务合同范例案例
- 物流理赔服务合同
- 宣传品采购合同样本集合
- 应季水果购销合同
- 法律咨询服务合同编写
- 房屋买卖居间合同样式
- 防震材料供需合同
- 商业美陈设计服务协议
- 防水工程保证书范文格式要求
- 责任险发展空间
- 2024年国家公务员考试《申论》真题(行政执法)及答案解析
- 中华人民共和国保守国家秘密法实施条例
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计
- 国开2024年秋《经济法学》计分作业1-4答案形考任务
- 生涯发展报告 (修改)
- 大学体育与体质健康(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)
- 铸牢中华民族共同体意识学习PPT
- DB42T169-2022岩土工程勘察规程
- 化工设备基础知识
评论
0/150
提交评论