广东省河源市2025届高二数学第一学期期末达标检测模拟试题含解析_第1页
广东省河源市2025届高二数学第一学期期末达标检测模拟试题含解析_第2页
广东省河源市2025届高二数学第一学期期末达标检测模拟试题含解析_第3页
广东省河源市2025届高二数学第一学期期末达标检测模拟试题含解析_第4页
广东省河源市2025届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省河源市2025届高二数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则的大小关系是()A. B.C. D.2.由1,2,3,4,5五个数组成没有重复数字的五位数,其中1与2不能相邻的排法总数为()A.20 B.36C.60 D.723.已知等比数列满足,则q=()A.1 B.-1C.3 D.-34.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.5.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.7.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.8.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.9.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.610.已知抛物线的焦点是双曲线的一个焦点,则双曲线的渐近线方程为()A. B.C. D.11.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有12.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设直线的方向向量分别为,若,则实数m等于___________.14.过抛物线的焦点作直线交抛物线于两点,为坐标原点,记直线的斜率分别为,则______.15.写出一个同时满足下列条件①②③的圆C的标准方程:__________①圆C的圆心在第一象限;②圆C与x轴相切;③圆C与圆外切16.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,,,其中与交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程18.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)如图,几何体中,平面,,,,E是中点,二面角的平面角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.(12分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.21.(12分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由22.(10分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:2、D【解析】先排3,4,5,然后利用插空法在4个位置上选2个排1,2.【详解】先排3,4,5,,共有种排法,然后在4个位置上选2个排列1,2,有种排法,则1与2不能相邻的排法总数为种,故选:D.3、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.4、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A5、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.6、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D7、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B8、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.9、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.10、B【解析】根据抛物线和写出焦点坐标,利用题干中的坐标相等,解出,结合从而求出答案.【详解】抛物线的焦点为,双曲线的,,所以,所以双曲线的右焦点为:,由题意,,两边平方解得,,则双曲线的渐近线方程为:.故选:B.11、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C12、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据向量垂直与数量积的等价关系,,计算即可.【详解】因为,则其方向向量,,解得.故答案为:2.14、【解析】过焦点作直线要分为有斜率和斜率不存在两种情况进行分类讨论.【详解】抛物线的焦点当过焦点的直线斜率不存在时,直线方程可设为,不妨令则,故当过焦点的直线斜率存在时,直线方程可设为,令由整理得则,综上,故答案为:15、(答案不唯一,但圆心坐标需满足,)【解析】首先设圆的圆心和半径,根据条件得到关于的方程组,即可求解.【详解】设圆心坐标为,由①可知,半径为,由②③可知,整理可得,当时,,,所以其中一个同时满足条件①②③的圆的标准方程是.故答案为:(答案不唯一,但圆心坐标需满足,)16、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.18、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列等差数列,所以.19、(1)证明见解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,从而可证平面;(2)以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,求平面的一个法向量与的方向向量,利用向量法可求直线与平面所成角的正弦值【小问1详解】证明:取中点,又是中点,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中点,,平面,,又,平面,平面.【小问2详解】解:以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,则,0,,,1,,,0,,,1,,1,,,0,,,1,设平面的一个法向量为,,,则,令,则,,平面的一个法向量为,,,设直线与平面所成角为,则,直线与平面所成角的正弦值为20、(1)(2)证明见解析,(3)【解析】(1)根据等比数列列出方程组求解首项、公比即可得解;(2)化简后得,可证明数列是等差数列,即可得出,再求出即可;(3)利用错位相减法求出数列的和.【小问1详解】设公比为,由条件可知,,所以;【小问2详解】,又,所以,所以数列是以为首项,为公差等差数列,所以,所以.【小问3详解】,,两式相减可得,,.21、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论.(2)以分别为轴,建立空间直角坐标系,分别求出平面与平面的法向量,利用向量法求求解即可.(3)设,,则,则由向量法结合条件可得答案.【详解】(1)在长方体中,,又,所以平面又平面,所以.(2)以分别为轴,建立空间直角坐标系因为,,是棱的中点则则为平面的一个法向量.设为平面的一个法向量.,所以,即取,可得所以如图平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.(3)设,,则由(2)平面的一个法向量设与平面所成角为则解得,取所以存在点,满足条件.22、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论