版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市八中高一数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A B.C. D.2.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.3.下列四个集合中,是空集的是()A. B.C. D.4.植物研究者在研究某种植物1-5年内的植株高度时,将得到的数据用下图直观表示.现要根据这些数据用一个函数模型来描述这种植物在1-5年内的生长规律,下列函数模型中符合要求的是()A.(且)B.(,且)C.D.5.设为定义在上的偶函数,且在上为增函数,则的大小顺序是()A. B.C. D.6.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}7.某同学参加研究性学习活动,得到如下实验数据:x1.02.04.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A. B.C. D.8.某几何体的三视图如图所示,数量单位为cm,它的体积是()A. B.C. D.9.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.10.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.661二、填空题:本大题共6小题,每小题5分,共30分。11.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得12.已知点,,在函数的图象上,如图,若,则______.13.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________14.向量在边长为1的正方形网格中的位置如图所示,则__________15.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________16.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求,的值;(2)求的值18.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域19.已知在第一象限,若,,,求:(1)边所在直线的方程;20.已知.(1)化简;(2)若是第二象限角,且,求的值.21.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由根据诱导公式可得答案.【详解】故选:A2、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.3、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.4、B【解析】由散点图直接选择即可.【详解】解:由散点图可知,植物高度增长越来越缓慢,故选择对数模型,即B符合.故选:B.5、A【解析】根据单调性结合偶函数性质,进行比较大小即可得解.【详解】因为为偶函数,所以又在上为增函数,所以,所以故选:A6、A【解析】根据并集定义求解即可.【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.7、A【解析】由表中数据的增大趋势和函数的单调性判断可得选项.【详解】解:由表中的数据看出:y随x的增大而增大,且增大的幅度越来越小,而函数,在的增大幅度越来越大,函数呈线性增大,只有函数与已知数据的增大趋势接近,故选:A.8、C【解析】由三视图可知,此几何体为直角梯形的四棱锥,根据四棱锥的体积公式即可求出结果.【详解】由三视图复原几何体为四棱锥,如图:它高为,底面是直角梯形,长底边为,上底为,高为,棱锥的高垂直底面梯形的高的中点,所以几何体的体积为:故选:C【点睛】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状以及几何尺寸,同时需熟记锥体的体积公式,属于基础题.9、C【解析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【点睛】本题考查了绝对值函数及零点的简单应用,属于基础题10、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一);【解析】由于,再根据平移求解即可.【详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:12、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.13、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.14、3【解析】由题意可知故答案为315、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.16、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)首先利用诱导公式得到,再根据同角三角函数的基本关系计算可得;(2)利用诱导公式化简,再将弦化切,最后代入求值即可;【小问1详解】解:因为,,所以,又解得或,因为,所以【小问2详解】解:18、(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】(1)根据奇偶性的定义判断;(2)由单调性的定义证明;(3)由单调性得值域【小问1详解】f(x)为奇函数由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)【小问2详解】证明:设任意,,有由,得,,即,所以函数f(x)在(1,+∞)上单调递增【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2]19、(1);(2)或.【解析】(1)直接写出直线方程得解;(2)求出直线的斜率即得解.小问1详解】解:因为,,所以直线所在直线方程为.【小问2详解】解:当点在直线上方时,由题得直线的斜率为,所以边所在直线点斜式方程为;当点在直线下方时,由题得直线的斜率为,所以边所在直线的点斜式方程为.综合得直线的方程为或.20、(1);(2).【解析】(1)根据诱导公式对进行化简即可(2)先由求得,再根据(1)的结论及同角三角函数关系式求解【详解】(1)(2),,∵是第二象限角,∴,【点睛】本题考查利用诱导公式进行化简,涉及利用同角三角函数关系由正弦值求余弦值,属综合基础题.21、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业环境保护责任合同
- 瓷制球形把手市场发展现状调查及供需格局分析预测报告
- 通风用气动叶轮市场环境与对策分析
- 2024年度互联网旅游服务平台合同
- 2024年度云计算中心建设及运营合同
- 螺旋输送机市场需求与消费特点分析
- 跑步机市场需求与消费特点分析
- 2024年度大豆品牌授权合同
- 04版设备采购合同范本
- 2024年度大豆信息化建设合同
- 反渗透膜清洗合同
- 工业互联网工程技术人员技能鉴定理论考试题库(含答案)
- ISO 55001-2024 资产管理-资管理体系-要求(中文版-雷泽佳翻译-2024)
- 脑挫伤课件完整版本
- 国家中医药管理局发布的406种中医优势病种诊疗方案和临床路径目录
- Unit+6+Understanding+ideas+Sharks+Dangerous+or+endangered+高中英语外研版(2019)必修第二册
- 知道网课智慧《数智化碳管理与应用》测试答案
- DL-T5704-2014火力发电厂热力设备及管道保温防腐施工质量验收规程
- CSPEN-成人营养筛查与评定量表2024(附评分表)
- 财务报表分析(第6版)即测即评客观题
- 临床诊疗指南操作规范自查记录
评论
0/150
提交评论