版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海师大附中2025届高一数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.2.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.3.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,若,且,则的最大值为A. B.C. D.4.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.5.函数的零点在A. B.C. D.6.函数的一个单调递增区间是()A. B.C. D.7.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角8.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.9.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.10.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x4二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为120°,半径为3,则扇形的面积是________.12.函数的零点个数为_________.13.已知函数,若,则________.14.,,且,则的最小值为______.15.已知,则的值是________,的值是________.16.已知a=0.32,b=413,c=log132,则a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为二次函数,不等式的解集是,且在区间上的最小值为-12(1)求的解析式;(2)设函数在上的最小值为,求的表达式18.已知函数(1)若是偶函数,求a值;(2)若对任意,不等式恒成立,求a的取值范围19.为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费).其中一组套餐变更如下:原方案资费手机月租费手机拨打电话家庭宽带上网费(50M)18元/月0.2元/分钟50元/月新方案资费手机月租费手机拨打电话家庭宽带上网费(50M)58元/月前100分钟免费,超过部分元/分钟(>0.2)免费(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于函数关系式;(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围20.某校高一(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是元,经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成:一部分是购买纯净水的费用,另一部分是其他费用780元,其中纯净水的销售价(元/桶)与年购买总量(桶)之间满足如图所示的关系.(Ⅰ)求与的函数关系;(Ⅱ)当为120时,若该班每年需要纯净水380桶,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料相比,哪一种花钱更少?21.已知以点为圆心的圆与直线:相切,过点的直线与圆相交于,两点,是的中点,.(1)求圆的标准方程;(2)求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题2、D【解析】由题意可得,由的范围可得的范围,再求其补集即可求解.【详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.3、A【解析】分析:利用三角函数的图象变换,可得,由可得,取,取即可得结果.详解:的图象向左平移个单位长度,再向上平移1个单位长度,得到,,且,,,因为,所以时,取为最小值;时,取为最大值最大值为,故选A.点睛:本题主要考查三角函数图象的变换以及三角函数的性质,属于中档题.能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.4、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A5、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.6、A【解析】利用正弦函数的性质,令即可求函数的递增区间,进而判断各选项是否符合要求.【详解】令,可得,当时,是的一个单调增区间,而其它选项不符合.故选:A7、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键8、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C9、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.10、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可.【详解】扇形的圆心角为120°,即,故扇形面积.故答案为:.12、3【解析】作出函数图象,根据函数零点与函数图象的关系,直接判断零点个数.【详解】作出函数图象,如下,由图象可知,函数有3个零点(3个零点分别为,0,2).故答案为:313、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题14、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:15、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.16、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据不等式的解集是,令,然后由在区间上的最小值为-12,由求解.(2)由(1)知函数的对称轴是,然后分,两种讨论求解.【详解】(1)因为不等式的解集是,令,因为在区间上的最小值为-12,所以,解得,所以.(2)当,即时,,当,即时,所以.【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解18、(1)0(2)【解析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,所以,即,故【小问2详解】由题意知在上恒成立,则,又因为,所以,则.令,则,可得,又因为,当且仅当时,等号成立,所以,即a的取值范围是19、(1);(2).【解析】(1)关键是求出原资费和新资费,原资费为68+0.2x,新资费是分段函数,x≤100时,为58,当x>100时,为,相减可得结论;(2)只要(1)中的y>0,则说明节省资费,列出不等式可得,注意当100<x≤400时,函数y为减函数,因此在x=400时取最小值,由此最小值>0,可解得范围试题解析:(1)i)当,ii)当,综上所述(未写扣一分)(2)由题意,恒成立,显然,当,,当,因为,为减函数所以当时,解得从而20、(Ⅰ);(Ⅱ)该班学生集体改饮桶装纯净水花钱更少.【解析】(Ⅰ)根据题意设出直线方程,再代入图示数据,即可得出与的函数关系;(Ⅱ)分别求出两种情形下的年花费费用,进行比较即可.【详解】(Ⅰ)根据题意,可设,时,;时,,,解得,所以与的函数关系为:;(Ⅱ)该班学生购买饮料的年费用为(元),由(Ⅰ)知,当时,,故该班学生购买纯净水的年费用为:(元),比购买饮料花费少,故该班学生集体改饮桶装纯净水花钱更少.【点睛】本题考查函数模型的选取及实际应用,属于简单题.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新能源项目开发合同项目投资估算与风险评估
- 2024年度版权许可使用合同标的:音乐作品版权3篇
- 泡茶课件教学课件
- 物流信息技术与应用 课件 9.项目九 数据交换与共享技术 下
- 《餐饮单位索证索票》课件
- 2024年度租赁合同租金调整及违约金规定3篇
- 2024年度教育培训与人才输出服务合同2篇
- 《s教学课件选区》课件
- 《公务员保险与福利》课件
- 体位摆放课件
- 医院合同管理办法
- 2023年度小区业主大会会议召开工作方案
- 第10课《唐雎不辱使命》课件-部编版语文九年级下册
- Unit 5 Developing ideas Language points 课件-高中英语外研版(2019)必修第一册
- 教师招聘结构化面试经典试题100题及答案
- MATLAB基础控制课件
- 计算机网络基础之网络设备课件
- 手足口病健康教育
- DB31T 840-2020 数字减影血管造影(DSA)X射线设备质量控制检测规范
- 平行四边形的判定平行四边形的判定-完整版课件
- 2022-2023年缝纫机械行业洞察报告PPT
评论
0/150
提交评论