2025届云南省宣威市第八中学高一数学第一学期期末经典试题含解析_第1页
2025届云南省宣威市第八中学高一数学第一学期期末经典试题含解析_第2页
2025届云南省宣威市第八中学高一数学第一学期期末经典试题含解析_第3页
2025届云南省宣威市第八中学高一数学第一学期期末经典试题含解析_第4页
2025届云南省宣威市第八中学高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省宣威市第八中学高一数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.42.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.3.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=()A.{2,3} B.{0,1,2,3}C.{1,2} D.{1,2,3}4.某组合体的三视图如下,则它的体积是A. B.C. D.5.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是()A. B.C. D.6.在中,为边的中点,则()A. B.C. D.7.已知幂函数的图象过点,则的值为A. B.C. D.8.的值是()A. B.C. D.9.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则10.下列函数中,最小正周期为的奇函数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是______.12.若幂函数在区间上是减函数,则整数________13.已知偶函数在单调递减,.若,则的取值范围是__________.14.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计15.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______16.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围18.已知为锐角,,(1)求和的值;(2)求和的值19.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围20.(1)求值:;(2)求值:;(3)已知,求的值21.已知集合.(1)若,求a的值;(2)若且“”是“”的必要不充分条件,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用零点存在性定理判断的范围,从而求得.【详解】在上递增,,所以,所以.故选:B2、C【解析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.3、B【解析】先求出集合B,再求A∪B.【详解】因为,所以.故选:B4、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式5、C【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案.【详解】依题意,是定义在上的奇函数,图象关于原点对称.当时,,结合的奇偶性,作出的大致图象如下图所示,根据的定义可知,选项C符合题意.故选:C6、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题7、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题8、C【解析】根据诱导公式即可求出【详解】故选:C9、D【解析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.10、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.12、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:213、【解析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.14、8100【解析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【点睛】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题15、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.16、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.18、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以19、(1)(2)(3)【解析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【点睛】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.20、(1)90;(2)0;(3).【解析】(1)利用指数幂的运算性质可求代数式的值.(2)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论