版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页郑州市外国语中学2024年数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5b=2c=2.5 B.a:b:c=5:12:13C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52、(4分)平面直角坐标系中,将直线l向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是()A.y=3x+2B.y=2x+4C.y=2x+1D.y=2x+33、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A.x(27﹣3x)=75 B.x(3x﹣27)=75C.x(30﹣3x)=75 D.x(3x﹣30)=754、(4分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012﹣2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥485、(4分)不等式x≥2的解集在数轴上表示为()A. B.C. D.6、(4分)下列各式中与是同类二次根式的是()A. B. C. D.7、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2 B.3 C.5 D.78、(4分)在一次统考中,从甲、乙两所中学初二学生中各抽取50名学生进行成绩分析,甲校的平均分和方差分别是82分和245分,乙校的平均分和方差分别是82分和190分,根据抽样可以粗略估计成绩较为整齐的学校是()A.甲校 B.乙校 C.两校一样整齐 D.不好确定哪校更整齐二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)样本-3、9、-2、4、1、5、的中位数是_____.10、(4分)方程的解为__________.11、(4分)如图,已知Rt△ABC中,∠BCA=90°,CD是斜边上的中线,BC=12,AC=5,那么CD=_______.12、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)13、(4分)如图,AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,AD=2,BC=10,则EF+PQ长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.(1)求证:①≌;②;(2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;(3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.15、(8分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?16、(8分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.(1)把统计图补充完整;(2)直接写出这组数据的众数和中位数;(3)若该校共有学生1600人,请根据该班的捐款情况估计该校捐款金额为20元的学生人数.17、(10分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.18、(10分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)大气气压低,空气不流动100底面灰尘大,空气湿度低汽车尾气排放工厂造成的污染140其他80调查结果扇形统计图请根据图表中提供的信息解答下列问题:(1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.(2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.(3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,平行四边形ABCD的顶点A是等边△EFG边FG的中点,∠B=60°,EF=4,则阴影部分的面积为________.20、(4分)如图,的对角线,相交于点,且,,那么的周长是________.21、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________22、(4分)当时,二次根式的值是___________.23、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.二、解答题(本大题共3个小题,共30分)24、(8分)已知,关于x的一次函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象交x轴于点(,0)?(2)k为何值时,y随x增大而增大?25、(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.26、(12分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)求出太阳花的付款金额(元)关于购买量(盆)的函数关系式;(2)求出绣球花的付款金额(元)关于购买量(盆)的函数关系式;(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
A.a2+b2=1.52+22=2.52=c2,所以能判断△ABC是直角三角形,故不符合题意;B.a:b:c=5:12:13,52+122=132,所以能判断△ABC是直角三角形,故不符合题意;C.∠A+∠B=∠C,∠A+∠B+∠C=180°,所以∠C=90°,△ABC是直角三角形,故不符合题意;D.∠A:∠B:∠C=3:4:5,3+4≠5,所以△ABC表示直角三角形,故符合题意,故选D.2、B【解析】在直线上取一点(-1,0),向左平移一个单位后坐标为(-2,0),设平移前的直线解析式为:y=2x+b,把(-2,0)带入,得b=4,所以y=2x+4,故选:B.点睛:此题考查了图形的平移与函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上点的平移相同.关键是要搞清楚平移前后的解析式有什么关系.3、C【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解【详解】解:设矩形宽为xm,则矩形的长为(30﹣3x)m,根据题意得:x(30﹣3x)=1.故选:C.本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.4、A【解析】这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,胜场得分2x分,输场得分(32﹣x)分,根据胜场得分+输场得分≥48可得不等式.解:这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,由题意得:2x+(32﹣x)≥48,故选A.5、C【解析】
根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为:故答案为:C.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、C【解析】
根据同类二次根式的定义一一判断选择即可.【详解】A.与不是同类二次根式,故不符合题意;B.与不是同类二次根式,故不符合题意;C.与是同类二次根式,符合题意;D.与不是同类二次根式,故不符合题意;综上答案选C.本题考查的是同类二次根式的定义与二次根式的化简,能够化简选项中的二次根式是解题的关键.7、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.详解:∵众数为5,∴x=5,∴这组数据为:2,3,3,5,5,5,7,∴中位数为5,故选C.点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.8、B【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲校和乙校的平均数是相等的,甲校的方差大于乙校的方差,∴成绩较为整齐的学校是乙校.故选B.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(本大题共5个小题,每小题4分,共20分)9、2.1.【解析】
把给出的6个数据按从小到大(或从大到小)的顺序排列,处于中间的两个数的平均数就是此组数据的中位数.【详解】解:把数据按从小到大排列-3、-2、1、4、1、9共有6个数,则这组数据的中位数为=2.1,所以这组数据的中位数为2.1.
故答案为:2.1.本题考查中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.10、0【解析】
先去分母转化为一次方程即可解答.【详解】解:原式去分母得1-x-(x+1)=0,得x=0.本题考查分式方程的解法,掌握步骤是解题关键.11、6.5【解析】【分析】根据勾股定理求AB,根据直角三角形斜边上的中线性质求CD.【详解】由勾股定理可得:AB=,因为,CD是斜边上的中线,所以,CD=故答案为6.5【点睛】本题考核知识点:勾股定理,直角三角形斜边上的中线.解题关键点:熟记勾股定理,直角三角形斜边上中线的性质.12、不公平.【解析】试题分析:先根据题意画出树状图,然后根据概率公式求解即可.画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是所以这个游戏不公平.考点:游戏公平性的判断点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.13、1【解析】
由AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,可得GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线,然后根据梯形中位线的性质求解即可求得答案.【详解】∵AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB∴GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线∵AD=2,BC=10∴∴∴故答案为:1.本题考查了梯形中位线的问题,掌握梯形中位线的性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.【解析】
(1)①根据中点和平行即可找出条件证明全等.②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.(2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.【详解】(1)①∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.∵AD=CD,∴△ADF≌△CDE.②由△ADF≌△CDE,∴AF=CE.∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.(2)四边形AFCE是矩形.∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.15、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.【解析】
(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.【详解】解:(1)由题意知:男生鞋号数据的平均数==24.11;男生鞋号数据的众数为21;男生鞋号数据的中位数==24.1.∴平均数是24.11,中位数是24.1,众数是21.(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,∴厂家最关心的是众数.本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.16、(1)见解析;(2)中位数为20元、众数为20元;(3)608人.【解析】
(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.(2)根据中位数和众数的定义解答;(3)根据该校共有学生1600人乘以捐款金额为20元的学生人数所占的百分数即可得到结论.【详解】解:(1)捐款金额为30元的学生人数人,
把统计图补充完整如图所示;(2)数据总数为50,所以中位数是第25、26位数的平均数,即元,数据20出现了19次,出现次数最多,所以众数是20元;(3)人,
答:该班的捐款情况估计该校捐款金额为20元的学生人数约为608人.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的知识.17、(Ⅰ)40,1;(Ⅱ)平均数是1.2,众数为1.2,中位数为1.2;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为3.【解析】
(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;
(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+12+10+3=40(人),
m=100×=1.
故答案是:40,1;
(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.2.∵在这组数据中,1.2出现了12次,出现的次数最多,∴这组数据的众数为1.2.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.2,有,∴这组数据的中位数为1.2.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为3.本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18、5013016%280.26【解析】
(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【详解】解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),C组的频数n=500﹣100﹣50﹣140﹣80=130(人),E组所占的百分比是:×100%=16%;故答案为:50,130,16%;(2)100×=28(万人);所以持D组“观点”的市民人数为28万人;(3)随机抽查一人,则此人持C组“观点”的概率是.答:随机抽查一人,则此人持C组“观点”的概率是.本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.一、填空题(本大题共5个小题,每小题4分,共20分)19、3【解析】
作AM⊥EF,AN⊥EG,连接AE,只要证明△AMH≌△ANL,即可得到S阴=S四边形AMEN,再根据三角形的面积公式即可求解.【详解】如图,作AM⊥EF,AN⊥EG,连接AE,∵△ABC为等边三角形,AF=AG,∴∠AEF=∠AEN,∵AM⊥EF,AN⊥EG,∴AM=AN,∵∠MEN=60°,∠EMA=∠ENA=90°,∴∠MAN=120°,∵四边形ABCD为平行四边形,∴BC∥AD,∴∠DAB=180°-∠B=120°,∴∠MAN=∠DAB
∴∠MAH=∠NAL,又AM⊥EF,AN⊥EG,AM=AN,∴△AMH≌△ANL∴S阴=S四边形AMEN,∵EF=4,AF=2,∠AEF=30°∴AE=2,AM=,EM=3∴S四边形AMEN=2××3×=3,∴S阴=S四边形AMEN=3故填:3.此题主要考查平行四边形与等边三角形的性质,解题的关键是熟知全等三角形的判定与含30°的直角三角形的性质.20、1【解析】
根据平行四边形的对角线互相平分可得出OC+OD=(AC+BD),再由平行四边形的对边相等可得AB=CD=6,继而代入可求出△OCD的周长【详解】∵的对角线,相交于点,∴,,.∵,∴,∴故答案为:1.此题考查了平行四边形的性质,属于基础题,解答本题的关键是熟练掌握平行四边形的对边相等及对角线互相平分的性质,难度一般.21、;【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.【详解】观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.故答案为本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.22、2【解析】当时,===2,故答案为:2.23、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.二、解答题(本大题共3个小题,共30分)24、(1)k=﹣1;(2)【解析】
(1)把点(,0)代入y=(1﹣3k)x+2k﹣1,列出关于k的方程,求解即可;(2)根据1﹣3k>0时,y随x增大而增大,解不等式求出k的取值范围即可.【详解】解:(1)∵关于x的一次函数y=(1﹣3k)x+2k﹣1的图象交x轴于点(,0),∴(1﹣3k)+2k﹣1=0,解得k=﹣1;(2)1﹣3k>0时,y随x增大而增大,解得.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.25、(1)证明见解析;(1).【解析】
(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.【详解】证明:,,四边形OCED是平行四边形,矩形ABCD,,,,,四边形OCED是菱形;在矩形ABCD中,,,,,,连接OE,交CD于点F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx外牙接头项目可行性研究报告(立项说明)
- 新建高低压开关元件及设备项目立项申请报告
- 年产xx复合板机项目可行性研究报告(立项备案)
- 年产xxx筒子纱项目投资分析报告
- 年产xx楼宇自控项目可行性研究报告(项目申请)
- 肾脓肿穿刺术后护理
- 艾滋病发病状况
- 数字经济解决方案
- 大班安全教案详案:放学路上
- 中班语言诗歌教案10篇
- 部编版语文五年级上册第五单元【集体备课】
- 空调采购安装方案(投标方案)
- 三菱电机与大金产品对比
- 《-鼹鼠的月亮河》阅读指导课教学设计
- 汉字与饮食文化
- 脑卒中的健康宣教PPT
- (主谓一致)语法-课件
- 多囊卵巢综合征的中西医诊疗方法-课件
- 南州六月荔枝丹教案公开课一等奖市赛课获奖课件
- 新高一数学学法指导
- 四年级上册数学说课稿-4.1 四则混合运算|北师大版
评论
0/150
提交评论