浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】_第1页
浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】_第2页
浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】_第3页
浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】_第4页
浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页浙江省台州市玉环市2024-2025学年九年级数学第一学期开学复习检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是()A.货车的速度是60千米/小时B.离开出发地后,两车第一次相遇时,距离出发地150千米C.货车从出发地到终点共用时7小时D.客车到达终点时,两车相距180千米2、(4分)直角梯形的一个内角为,较长的腰为6,一底为5,则这个梯形的面积为()A. B. C.25 D.或3、(4分)下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.4、(4分)当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-5、(4分)如图,M是的边BC的中点,平分,于点N,延长BN交AC于点B,已知,,,则的周长是()A.43 B.42 C.41 D.406、(4分)关于5-1A.它是无理数B.它是方程x2+x-1=0的一个根C.0.5<5-12D.不存在实数,使x2=57、(4分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是()A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90° D.AE⊥BF8、(4分)由线段a,b,c可以组成直角三角形的是()A.a=5,b=8,c=7 B.a=2,b=3,c=4C.a=24,b=7,c=25 D.a=5,b=5,c=6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.10、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.11、(4分)分解因式:2x2-8x+8=__________.12、(4分)一组数据:3,0,,3,,1.这组数据的众数是_____________.13、(4分)把方程x2﹣3=2x用配方法化为(x+m)2=n的形式,则m=_____,n=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.(1)求证:矩形是正方形;(2)判断与之间的数量关系,并给出证明.15、(8分)如图,函数与的图象交于.(1)求出,的值.(2)直接写出不等式的解集;(3)求出的面积16、(8分)如图1,边长为的大正方形中有一个边长为的小正方形(),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是_______;(2)如果大正方形的边长比小正方形的边长多3,它们的面积相差57,试利用(1)中的公式,求,的值.17、(10分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.18、(10分)(1)计算:(2)计算:B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式组的解集为_____.20、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.21、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,正方形A的面积是10cm1,B的面积是11cm1,C的面积是13cm1,则D的面积为____cm1.22、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.23、(4分)若,则____.二、解答题(本大题共3个小题,共30分)24、(8分)某景点的门票零售价为80元/张,“五一”黄金周期间,甲乙两家旅行社推出优惠活动,甲旅行社一律九折优惠;乙旅行社对10人以内(含10人)不优惠,超过10人超出部分八折优惠,某班部分同学去该景点旅游.设参加旅游人数为x人,购买门票需要y元.(1)分别直接写出两家旅行社y与x的函数关系式,并写出对应自变量x的取值范围;(2)请根据该班旅游人数设计最省钱的购票方案.25、(10分)如图,直线y=3﹣2x与x轴,y轴分别相交于点A,B,点P(x,y)是线段AB上的任意一点,并设△OAP的面积为S.(1)S与x的函数解析式,求自变量x的取值范围.(2)如果△OAP的面积大于1,求自变量x的取值范围.26、(12分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.【详解】解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:100x=60+60x,解得:x=1.5,∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),故B错误;甲从起点到终点共用时为:600÷60=10(小时),故C正确;∵客车到达终点时,所用时间为6小时,货车先出发1小时,∴此时货车行走的时间为7小时,∴货车走的路程为:7×60=420(千米),∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;故选C.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2、D【解析】试题分析:根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.解:根据题意可作出下图.BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=cm2;当CD=5cm时,AB=5−3=2cm,梯形的面积=cm2;故梯形的面积为或,故选D.3、C【解析】

本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).4、B【解析】

根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.5、A【解析】

证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.【详解】解:在△ABN和△ADN中,∴△ABN≌△ADN,

∴AD=AB=10,BN=DN,

∵M是△ABC的边BC的中点,BN=DN,

∴CD=2MN=8,

∴△ABC的周长=AB+BC+CA=43,

故选A.本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6、D【解析】

根据开方开不尽的数是无理数,可对A作出判断;利用一元二次方程的公式法求出方程x2+x-1=0的解,可对B作出判断,分别求出5-12-0.5和5-12【详解】解:A、5-12是无理数,故B、x2+x-1=0b2-4ac=1-4×1×(-1)=5∴x=-1±∴5-12是方程x2+x-1=0的一个根,故C、∵5∴5-12∵5∴5-12∴0.5<5-12<1,故D、∵5∴5-12∴存在实数x,使x2=5-12,故故答案为:D本题主要考查无理数估算,解一元二次方程及平方根的性质,综合性较强,牢记基础知识是解题关键.7、C【解析】

根据正方形的性质可证明△ABE≌△BCF,通过△ABE≌△BCF逐一判断即可【详解】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C本题考查正方形的性质及全等三角形的判断,熟练掌握相关知识是解题关键.8、C【解析】

由勾股定理的逆定理,只要验证两条较短边的平方和是否等于最长边的平方即可.【详解】52+72≠82,故不是直角三角形,故选项A错误;22+32≠42,故不是直角三角形,故选项B错误;72+242=252,故是直角三角形,故选项C正确;52+52≠62,故不是直角三角形,故选项D错误.

故选:C.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

由C′D∥BC,可得比例式,设AB=a,构造方程即可.【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴,即,解得a=−1−(舍去)或−1+.所以AB长为.故答案为.本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.10、6.1.【解析】

根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=12,OD=BD=1,在Rt△BOC中,BC==13,∵点E是BC边的中点,∴OE=BC=6.1,故答案为:6.1.此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.11、2(x-2)2【解析】

先运用提公因式法,再运用完全平方公式.【详解】:2x2-8x+8=.故答案为2(x-2)2.本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.12、2【解析】

根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.故答案为:2.本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.13、-11【解析】

先将常数项移到等号的右边、一次项移到等式左边得x2−2x=3,再配方得(x−1)2=1,故可以得出结果.【详解】∵x2−3=2x,∴x2−2x=3,则x2−2x+1=3+1,即(x−1)2=1,∴m=−1、n=1,故答案为:−1、1.本题考查了解一元二次方程,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方;选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2),理由详见解析.【解析】

作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;根据四边形的性质即全等三角形的性质即可证明,即可得在中,则【详解】证明:(1)过作于点,过作于点,如图所示:正方形,,,且,四边形为正方形四边形是矩形,,.,又,在和中,,,矩形为正方形,(2)矩形为正方形,,四边形是正方形,,,,在和中,,,,在中,,本题考查正方形的判定与性质,解题关键在于证明.15、(1),;(2);(3).【解析】

(1)先把点坐标代入求出的值,进而可得,,再把点坐标代入可得的值;(2)根据函数图象可直接得到答案:直线在直线上方的部分且即为所求;(3)首先求出、两点坐标,进而可得的面积.【详解】解:(1)过.,解得:,,,的图象过,.,解得:;(2)不等式的解集为;(3)当中,时,,,中,时,,,;的面积=.此题主要考查了一次函数图象上点的坐标特点,以及一次函数与不等式,关键是掌握函数图像上点的特征:函数图象经过的点必能满足解析式.16、(1);(2)a=11,b=1【解析】

(1)根据两个图形的面积即可列出等式;(2)根据题意得到,由面积相差57得到,解a与b组成的方程组求解即可.【详解】解:(1)图1阴影面积=,图2的阴影面积=(a+b)(a-b),∴,故答案为:;(2)由题意可得:.∵.∴.∴解得∴,的值分别是11,1.此题考查完全平方公式与几何图形的关系,二元一次方程组的实际应用.17、(1)(2)【解析】

(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°-∠BAE-∠AEB=56°,∵在平行四边形ABCD中,∠D=∠B,∴∠D=56°.(2)∵DC∥AB,∴△CEF∽△BEA.∵BE=3EC∴,∵S△EFC=1.∴S△ABE=9a,∵∴∴∴∵∴此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.18、(1)15;(2).【解析】

(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;(2)先分别化简各个二次根式,然后再进行合并即可.【详解】(1)原式=3×5÷=15÷=15;(2)原式=3﹣4+=-+.本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1<x≤2【解析】

解:,解不等式①,得x>1.解不等式②,得x≤2,故不等式组的解集为1<x≤2.故答案为1<x≤2.20、【解析】

过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.【详解】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:

∴EM∥GO∥FN

∵2EG=FG

∴根据平行线分线段成比例定理得:NO=2MO

∵E(-1,1)

∴MO=1

∴NO=2

∴点F的横坐标为2

∵F在的图象上

∴F(2,2)

又∵E(-1,1)

∴由待定系数法可得:直线EF的解析式为:y=

当x=0时,y=

∴G(0,)

∴OG=

故答案为:.此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.21、30【解析】

根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64cm1,问题即得解决.【详解】解:如图记图中三个正方形分别为P、Q、M.

根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.

即A、B、C、D的面积之和为M的面积.

∵M的面积是81=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,

∴x=30,故答案为30.本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.22、58,5【解析】

根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的14,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4【详解】∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴S△ADC=S△ABC=12S矩形ABCD=12×20=∴S△AOB=S△BCO=12S△ABC=12×10=∴S△ABO1=12S△AOB=12×5=∴S△ABO2=12S△ABO1=5S△ABO3=12S△ABO2=5S△ABO4=12S△ABO3=5∴S平行四边形AO4C5B=2S△ABO4=2×516=5平行四边形AOnCn+1B的面积为52故答案为:58;5本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.23、1【解析】

由a+b-1ab=0得a+b.【详解】解:由a+b-1ab=0得a+b=1ab,=1,故答案为1.本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键.二、解答题(本大题共3个小题,共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论