版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页孝感市重点中学2024年数学九上开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算正确的是()A. B. C. D.2、(4分)某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A. B.C. D.3、(4分)如图,△ABC中,AB=6,AC=4,AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE为()A.8.5 B.8 C.7.5 D.54、(4分)如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx的解集为()A.x>2 B.x<2 C.x>-4 D.x<-45、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=()A.25° B.30° C.35° D.55°6、(4分)在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和47、(4分)使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x≠1 D.x>18、(4分)如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12) B.(78,78) C.(66,66) D.(55,55)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.10、(4分)函数自变量的取值范围是_________.11、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.12、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.13、(4分)已知直线y=2x﹣5经过点A(a,1﹣a),则A点落在第_____象限.三、解答题(本大题共5个小题,共48分)14、(12分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?15、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.16、(8分)计算:(1)-|5-|+;(2)-(2+)217、(10分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.18、(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若,是一元二次方程的两个根,则______.20、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.21、(4分)如图,线段AB两个点的坐标分别为A2.5,5,B5,0,以原点为位似中心,将线段AB缩小得到线段CD,若点D的坐标为2,0,则点C的坐标为22、(4分)若n边形的每个内角都是,则________.23、(4分)如图,在矩形中,分别是边和的中点,,则的长为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.25、(10分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.26、(12分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.本题考查了二次根式的运算,掌握运算法则是解题的关键.2、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:,实际用时为:.所列方程为:,故选C.本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3、D【解析】
延长BA、CD交于F,根据等腰三角形的判定定理和性质定理得到AF=AC,CD=DF,根据三角形中位线定理得到答案.【详解】延长BA、CD交于F,∵AD是∠BAC的外角平分线,CD⊥AD,∴AF=AC,CD=DF,∴BF=BA+AF=BA+AC=10,∵CD=DF,点E是BC的中点,∴ED=12BF=5故选:D.此题考查三角形中位线定理,等腰三角形的判定与性质,解题关键在于作辅助线4、B【解析】
从图象确定kx+b>mx时,x的取值范围即可.【详解】解:从图象可以看出,当x<2时,kx+b>mx,故选:B.本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.5、A【解析】
由AD∥BC得到∠B=180°-∠A,而∠A=115°,由此可以求出∠B,又CE⊥AB,所以在三角形BCE中利用三角形内角和即可求出∠BCE.【详解】解:∵AD∥BC,
∴∠B=180°-∠A=65°,
又CE⊥AB,
∴∠BCE=90°-65°=25°.
故选:A.此题主要考查平行四边形的性质和直角三角形的性质.6、B【解析】
先根据角平分线及矩形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【详解】∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故选:B.本题主要考查角平分线的定义和等腰三角形的判定定理,掌握“双平等腰”模型,是解题的关键.7、C【解析】
分式的分母不为零,即x-1≠1.【详解】解:当分母x-1≠1,即x≠1时,分式有意义;
故选:C.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.8、B【解析】
根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-,),Bn(,)(n为正整数)”,再根据该规律解决问题.【详解】解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-,),Bn(,)(n为正整数).∴B12(,),即(78,78).故选B本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-,),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、x<-2【解析】【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.所以,的解集为x<-2.故答案为x<-2【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.10、【解析】
根据分式有意义的条件求自变量的取值范围即可.【详解】解:由题意可知:x+2018≠0解得x≠-2018故答案为:.本题考查求自变量的取值范围,掌握分式成立的条件分母不能为零是本题的解题关键.11、x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.12、7【解析】试题分析:如图,过点A做BC边上高,所以EPAM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以,BM=CM,所以,因此CE=713、四.【解析】
把点A(a,1-a)代入直线y=2x-5求出a的值,进而可求出A点的坐标,再根据各象限内点的坐标特点判断出A点所在的象限即可.【详解】把点A(a,1−a)代入直线y=2x−5得,2a−5=1−a,解得a=2,故A点坐标为(2,−1),由A点的坐标可知,A点落在第四象限.故答案为:四.本题考查了一次函数图象上点的坐标特征,牢牢掌握一次函数图像上的坐标特征是解答本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)y=24-2x;(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a【解析】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;(2)根据总社区计划对面积为1200m2,即可列出函数关系式;(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.【详解】(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,经检验,x=50是方程的解,故甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)依题意得100x+50y=1200,化简得y=24-2x,故求y与x的函数解析式为y=24-2x;(3)∵工期不得超过14天,∴x+y≤14,0≤x≤14,0≤y≤14即x+24-2x≤14,解得x≥10,∴x的取值为10≤x≤12;设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a当x=12时,w=(1600+a)×12=19200+12a,∵100≤a≤300,经过计算得当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.15、投递快递总件数的月平均增长率是10%.【解析】
设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.【详解】解:设投递快递总件数的月平均增长率是x,依题意,得:30(1+x)2=36.3则1+x=±1.1解得:x1=0.1=10%,x2=−2.1(舍),答:投递快递总件数的月平均增长率是10%.考核知识点:一元二次方程的应用.理解增长率是关键.16、(1)13+4;(2)-1.【解析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.【详解】解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.故答案为:(1)13+4;(2)-1.本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17、5m【解析】
设矩形的宽BC=xm.根据面积列出方程求解可得.【详解】解:设矩形的宽BC=xm.则AB=(20-2x)m,根据题意得:x(20-2x)=50,解得:,答:矩形的宽为5m.此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.18、(1)y=-90x+1;(2)s=1-150x;(3)a=108(千米/时),作图见解析.【解析】
(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+1.设y=0时,求出x的值可知乙车到达终点所用的时间.【详解】(1)由图知y是x的一次函数,设y=kx+b∵图象经过点(0,1),(2,120),∴解得∴y=-90x+1.即y关于x的表达式为y=-90x+1.(2)由(1)得:甲车的速度为90千米/时,甲乙相距1千米.∴甲乙相遇用时为:1÷(90+60)=2,当0≤x≤2时,函数解析式为s=-150x+1,2<x≤时,s=150x-1<x≤5时,s=60x;(3)在s=-150x+1中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚20分钟到达,20分钟=小时,所以在y=-90x+1中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为+-2=(小时).乙车与甲车相遇后的速度a=(1-2×60)÷=108(千米/时).∴a=108(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.考点:一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、3【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.【详解】解:∵,是一元二次方程的两个根,∴,∴.故答案为:3.本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.20、2【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.【详解】解:,不等式组整理得:,由数轴得:,可得,解得:,故答案为2此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.21、1,2【解析】
利用点B和点D的坐标之间的关系得到线段AB缩小2.5倍得到线段CD,然后确定C点坐标.【详解】解:∵将线段AB缩小得到线段CD,点B(5,0)的对应点D的坐标为(2.0),∴线段AB缩小2.5倍得到线段CD,∴点C的坐标为(1,2).本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.22、1【解析】
根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.【详解】解:∵n边形的每个内角都是120°,
∴每一个外角都是180°-120°=10°,
∵多边形外角和为310°,
∴多边形的边数为310÷10=1,故答案为:1.此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.23、6【解析】
连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.【详解】如图所示,连接AC,∵E、F分别为AD、CD的中点,EF=3,∴AC=2EF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计师工作计划
- 2024年体育用品销售员提成及促销活动合同3篇
- 2024年建筑节能施工员聘用合同3篇
- 初中暑假学习计划
- 高炉炉渣综合利用工程可行性研究报告
- 三年级教学工作计划5篇
- 2022中学班主任个人工作计划
- 小学体育工作总结
- 公司助理个人实习工作
- 六年级毕业演讲稿范文集锦七篇
- 四年级下册混合运算100道及答案
- 浙江省宁波市慈溪市2023-2024学年八年级上学期期末数学试题(含答案)
- 【小学心理健康教育分析国内外文献综述4100字】
- 艺术疗愈行业分析
- 中医院肺病科年度工作计划
- 老年综合评估知情同意书
- 会议筹备工作分工表
- 2023火电机组深度调峰工况下的涉网性能技术要求
- 医学英语术语解密-福建医科大学中国大学mooc课后章节答案期末考试题库2023年
- 内燃机车点检方法探讨
- 2023初一语文现代文阅读理解及解析:《猫》
评论
0/150
提交评论