![太原市2025届九上数学开学考试试题【含答案】_第1页](http://file4.renrendoc.com/view12/M0A/0F/3B/wKhkGWcivBiAPQxoAAHMUSHXu20616.jpg)
![太原市2025届九上数学开学考试试题【含答案】_第2页](http://file4.renrendoc.com/view12/M0A/0F/3B/wKhkGWcivBiAPQxoAAHMUSHXu206162.jpg)
![太原市2025届九上数学开学考试试题【含答案】_第3页](http://file4.renrendoc.com/view12/M0A/0F/3B/wKhkGWcivBiAPQxoAAHMUSHXu206163.jpg)
![太原市2025届九上数学开学考试试题【含答案】_第4页](http://file4.renrendoc.com/view12/M0A/0F/3B/wKhkGWcivBiAPQxoAAHMUSHXu206164.jpg)
![太原市2025届九上数学开学考试试题【含答案】_第5页](http://file4.renrendoc.com/view12/M0A/0F/3B/wKhkGWcivBiAPQxoAAHMUSHXu206165.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页太原市2025届九上数学开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列根式是最简二次根式的是()A.12 B.0.3 C.3 D.2、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53 B.53,56 C.56,53 D.56,563、(4分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲01202乙21011关于以上数据的平均数、中位数、众数和方差,说法不正确的是()A.甲、乙的平均数相等 B.甲、乙的众数相等C.甲、乙的中位数相等 D.甲的方差大于乙的方差4、(4分)一次函数y=kx+b,当k>0,b<0时,它的图象是()A. B. C. D.5、(4分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°6、(4分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()A.1 B. C. D.27、(4分)已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤28、(4分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将一元二次方程化成一般式后,其一次项系数是______.10、(4分)如图,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An,在x轴上,点B1、B2、…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.11、(4分)化简3﹣2=_____.12、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.13、(4分)3-1×三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数的图象经过(2,5)和(﹣1,﹣1)两点.(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时,y如何变化?15、(8分)如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF=(填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.16、(8分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.(1)求点C的坐标.(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.17、(10分)已知一次函数的图象经过点与点.(1)求这个一次函数的解析式;(2)若点和点在此一次函数的图象上,比较,的大小.18、(10分)已知关于的方程.(1)求证:无论取何值时,方程总有实数根;(2)给取一个适当的值,使方程的两个根相等,并求出此时的两个根.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)计算的倒数是_____.20、(4分)如图,一次函数的图象交轴于点,交轴于点,点在线段上,过点分别作轴于点,轴于点.若矩形的面积为,则点的坐标为______.21、(4分)如图所示,将直角三角形ACB,∠C=90°,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=3,阴影部分面积为_____________.22、(4分)对于实数,,,表示,两数中较小的数,如,.若关于的函数,的图象关于直线对称,则的取值范围是__,对应的值是__.23、(4分)在直角坐标系中,直线与轴交于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,…,则等边的边长是______.二、解答题(本大题共3个小题,共30分)24、(8分)先化简再求值:,其中a=-2。25、(10分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.求证:AE=FE.26、(12分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示.设步道的宽为a(m).(1)求步道的宽.(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.己知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2,且区域丙为正方形,求塑胶跑道的总面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【详解】A、12B、0.3=C、3是最简二次根式,故此选项正确;D、12=23故选:C.此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.2、D【解析】
根据众数和中位数的定义求解可得.【详解】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、B【解析】
根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,xn,则(x1+x2+…+xn)就叫做这n个数的算术平均数;s2=进行计算即可.【详解】解:A、甲的平均数为1,乙的平均数为1,故原题说法正确;B、甲的众数为0和2,乙的众数为1,故原题说法不正确;
C、甲的中位数为1,乙的中位数为1,故原题说法正确;
D、甲的方差为,乙的方差为,甲的方差大于乙的方差,故原题说法正确;
故选B.本题考查众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.4、C【解析】试题解析:根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.5、B【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.6、C【解析】
由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′G=x,由勾股定理即可得:x2+4=(4-x)2,解此方程即可求得答案.【详解】∵四边形ABCD是矩形,∴∴由折叠的性质,可得:A′D=AD=3,A′G=AG,∴A′B=BD−A′D=5−3=2,设A′G=x,则AG=x,BG=AB−AG=4−x,在Rt△A′BG中,∴解得:∴故选:C.考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.7、B【解析】
解不等式①可得出x≥,结合不等式组的解集为x≥1即可得出a=1,由此即可得出结论.【详解】,∵解不等式①得:x≥,又∵不等式组的解集是x≥1,∴a=1.故选B.本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.8、B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,所以(4)错误,故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、-7【解析】
根据完全平方公式进行化简即可求解.【详解】由得x2-7x-3=0∴其一次项系数是-7.此题主要考查一元二次方程的一般式,解题的关键是熟知完全平方公式.10、1【解析】
根据一次函数的性质可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根据等腰直角三角形斜边上的高等于斜边的一半求出OA3,同理求出OA4,然后根据变化规律写出即可.【详解】解:∵直线为y=x,∴∠B1OA1=45°,∵△A2B2A3,∴B2A2⊥x轴,∠B2A3A2=45°,∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,∴OA3=2A2B2=2OA2=2×2=4,同理可求OA4=2OA3=2×4=23,…,所以,OA2019=1.故答案为:1.本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,熟记性质并确定出等腰直角三角形是解题的关键.11、【解析】
直接合并同类二次根式即可.【详解】原式=(3﹣2)=.故答案为.本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12、3【解析】
由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.13、3【解析】原式=13三、解答题(本大题共5个小题,共48分)14、y=2x+1;y随着x的增大而增大.【解析】
(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【详解】解:(1)设一次函数解析式为y=kx+b,将(2,5)与(﹣1,﹣1)代入得,解得:k=2,b=1,则一次函数解析式为y=2x+1;(2)如图所示,y随着x的增大而增大.此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.15、(1)45°;(2)GF=AG+CF,证明见解析;(3)①1;②,理由见解析.【解析】
(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=1-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=1-x,GF=3+x,则有(3+x)2=(1-x)2+32,解得x=2∴S△BFG=•BF•BG=1.②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.16、(1)C(2,1);(2)经过点B1的反比例函数为y=.【解析】
(1)过点C作CD⊥x轴于点D,BC与x轴平行可知CD⊥BC,即可求出CD的长,进而得出C点坐标;(2)由图形旋转的性质得出CB1的长,进而可得出B1的坐标,设经过点B1(2,3)的反比例函数为,把B1的坐标代入即可得出k的值,从而得出反比例函数的解析式.【详解】解:(1)作CD⊥x轴于D.
∵BC与x轴平行,∴S△ABC=BC•CD,∵BC=2,S△ABC=1,∴CD=1,∴C(2,1);(2)∵由旋转的性质可知CB1=CB=2,∴B1(2,3).
设经过点B1(2,3)的反比例函数为,∴3=,
解得k=6,∴经过点B1的反比例函数为y=.本题考查的是反比例函数综合题,涉及到图形旋转的性质及三角形的面积公式、用待定系数法求反比例函数的解析式,涉及面较广,难度适中.17、(1)y=2x-1;(2)m<n.【解析】
(1)设一次函数解析式为y=kx+b,将已知两点坐标代入得到方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式;(2)利用一次函数图象的增减性进行解答.【详解】(1)设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图象经过点(3,5)与(-4,-9),∴,解得,∴这个函数的解析式为y=2x-1;(2)∵k=2>0,∴y随x的增大而增大.∵a<a+1,∴m<n.本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.18、(1)详见解析;(2)【解析】
(1)先根据根的判别式求出△,再判断即可;(2)把代入方程,求出方程的解即可.【详解】(1)∵∴无论取何值时,方程总有实数根;(2)当即时,方程的两根相等,此时方程为解得本题考查了根的判别式和解一元二次方程,能熟记根的判别式的内容是解此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
求出tan30°,根据倒数的概念计算即可.【详解】,,则的倒数是,故答案为:.本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.20、(,1)或(,3)【解析】
由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是可求解.【详解】解:∵点P在一次函数y=﹣2x+4的图象上,∴设P(x,﹣2x+4),∴x(﹣2x+4)=,解得:x1=,x2=,∴P(,1)或(,3).故答案是:(,1)或(,3)本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.21、1【解析】
根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.【详解】∵△ACB平移得到△DEF,∴CE=BF=2,DE=AC=6,∴GE=DE-DG=6-3=3,由平移的性质,S△ABC=S△DEF,∴阴影部分的面积=S梯形ACEG=12(GE+AC)•CE=12(3+6)故答案为:1.本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.22、或,6或3.【解析】
先根据函数可知此函数的对称轴为y轴,由于函数关于直线x=3对称,所以数,的图象即为的图象,据此解答即可【详解】设,①当与关于对称时,可得,②在,中,与没重合部分,即无论为何值,即恒小于等于,那么由于对对称,也即对于对称,得,.综上所述,或,对应的值为6或3故答案为或,6或3此题考查函数的最值及其几何意义,解题关键在于分情况讨论23、【解析】
先从特殊得到一般探究规律后,利用规律解决问题即可;【详解】∵直线l:y=x-与x轴交于点B1
∴B1(1,0),OB1=1,△OA1B1的边长为1;
∵直线y=x-与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22;
由此可得,△AnBn+1An+1的边长是2n,
∴△A2018B2019A2019的边长是1.
故答案为1.考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版道德与法治九年级下册第二单元第三课《与世界紧相连第2框与世界深度互动》听课评课记录
- 2022版新课标七年级上册道德与法治第五课交友的智慧2课时听课评课记录
- 人教版数学九年级上册《直接开平方法解方程》听评课记录3
- 人教版地理八年级下册7.1《自然特征与农业》听课评课记录
- 环境评估服务合同(2篇)
- 湘教版数学八年级上册2.2《命题的证明》听评课记录2
- 北师大版道德与法治九年级上册6.2《弘扬法治精神》听课评课记录
- 北京课改版历史八年级上册第10课《辛亥革命与中华民国建立》听课评课记录
- 湘教版数学七年级上册《2.5整式的加法和减法(1)》听评课记录2
- 部编版八年级历史上册《第1课 鸦片战争》听课评课记录
- 2024年临床医师定期考核试题中医知识题库及答案(共330题) (二)
- 2025-2030年中国反渗透膜行业市场发展趋势展望与投资策略分析报告
- 湖北省十堰市城区2024-2025学年九年级上学期期末质量检测道德与法治试题 (含答案)
- 山东省潍坊市2024-2025学年高三上学期1月期末 英语试题
- 春节节后收心会
- 《榜样9》观后感心得体会四
- 七年级下册英语单词表(人教版)-418个
- 2025年山东省济宁高新区管委会“优才”招聘20人历年高频重点提升(共500题)附带答案详解
- 2025年中国社会科学评价研究院第一批专业技术人员招聘2人历年高频重点提升(共500题)附带答案详解
- 交警安全进校园课件
- (2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷-新课标Ⅰ卷(含部分解析)
评论
0/150
提交评论